- Michelle Kelman
- Jihan Wang
- Own Implementation
- Neural Network models with different activation functions
- Simple PCA and t-SNE methods with 2D and 3D plot functions
- Clone our project
- Download the dataset from the Kaggle link above
- Copy the extracted data files into the project data folder
- Process the data:
python data.py
- Run the different models:
Activation Function | Logistic (Sigmoid) | ReLU | Hyperbolic Tangent |
---|---|---|---|
1 Hidden Layer Neural Network | python logistic-1.py |
python relu-1.py |
python tanh-1.py |
scikit Neural Network MLPClassifier | python logistic-s.py |
python relu-s.py |
python tanh-s.py |
Keras Convolutional Neural Network | python logistic-k.py |
python relu-k.py |
python tanh-k.py |
Additional hidden layer models:
Activation Function | Logistic (Sigmoid) | ReLU | Hyperbolic Tangent |
---|---|---|---|
2 Hidden Layer Neural Network | python extra/logistic-2.py |
python extra/relu-2.py |
python extra/tanh-2.py |
3 Hidden Layer Neural Network | python extra/logistic-3.py |
python extra/relu-3.py |
python extra/tanh-3.py |
- Get the data in the hidden layer and output layer: run forward() function
- Run the PCA or t-SNE models