Skip to content

michellekelman/HandwrittenLetters

Repository files navigation

HandwrittenLetters

CS 6375.002 Final Project

Project Title: Recognizing Handwritten Letters using Neural Network Algorithms

Team Members:

  • Michelle Kelman
  • Jihan Wang

Dataset Type:

Algorithm Approach:

  • Own Implementation
  • Neural Network models with different activation functions
  • Simple PCA and t-SNE methods with 2D and 3D plot functions

How To Use:

  1. Clone our project
  2. Download the dataset from the Kaggle link above
  3. Copy the extracted data files into the project data folder
  4. Process the data: python data.py
  5. Run the different models:
Activation Function Logistic (Sigmoid) ReLU Hyperbolic Tangent
1 Hidden Layer Neural Network python logistic-1.py python relu-1.py python tanh-1.py
scikit Neural Network MLPClassifier python logistic-s.py python relu-s.py python tanh-s.py
Keras Convolutional Neural Network python logistic-k.py python relu-k.py python tanh-k.py

Additional hidden layer models:

Activation Function Logistic (Sigmoid) ReLU Hyperbolic Tangent
2 Hidden Layer Neural Network python extra/logistic-2.py python extra/relu-2.py python extra/tanh-2.py
3 Hidden Layer Neural Network python extra/logistic-3.py python extra/relu-3.py python extra/tanh-3.py
  1. Get the data in the hidden layer and output layer: run forward() function
  2. Run the PCA or t-SNE models

About

CS 6375.002 Final Project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages