Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
meiqihu authored Feb 5, 2023
1 parent 48db652 commit a78c2e8
Showing 1 changed file with 38 additions and 21 deletions.
59 changes: 38 additions & 21 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,31 +1,48 @@
# ACDA
# Hyperspectral anomaly change detection based on autoencoder
Pytorch implementation of JSTARS paper "Hyperspectral anomaly change detection based on autoencoder".
![image](https://github.com/meiqihu/ACDA/blob/main/Figure_ACDA.png)
# Paper
[Hyperspectral anomaly change detection based on autoencoder](https://ieeexplore.ieee.org/document/9380336)

Please cite our paper if you find it useful for your research.

>@ARTICLE{9380336,
author={Hu, Meiqi and Wu, Chen and Zhang, Liangpei and Du, Bo},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
title={Hyperspectral Anomaly Change Detection Based on Autoencoder},
year={2021},
volume={14},
number={},
pages={3750-3762},
doi={10.1109/JSTARS.2021.3066508}}

# Installation
Install Pytorch 1.10.2 with Python 3.6
# Dataset
Download the [dataset of Viareggio 2013](https://pan.baidu.com/s/1sRmdjsT-xl6DQJeoPIBNYA),passcode提取密码:qdqf

This is a code of the paper "Hyperspectral anomaly change detection based on autoencoder" implemented on PyTorch.
Pytorch is needed for running this code.
[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning

Paper is available on https://ieeexplore.ieee.org/abstract/document/9380336
>img_data.mat:
My personal google web:https://scholar.google.com.hk/citations?hl=zh-CN&user=jxyAHdkAAAAJ
>>img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2)
-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning
1. img_data.mat:
img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2)
>pretrain_samples:
>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.]
>groundtruth_samples:
>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;
>random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;
# Usage
maincode.py

链接:https://pan.baidu.com/s/1sRmdjsT-xl6DQJeoPIBNYA
提取码:qdqf
# More
[My personal google web](https://scholar.google.com.hk/citations?hl=zh-CN&user=jxyAHdkAAAAJ)


2. pretrain_samples:
un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.]
3. groundtruth_samples:
un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;
4. random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;

-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
[Usage]: maincode.py

-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

If you use this code for your research, please cite our papers:
Hu M, Wu C, Zhang L, et al. Hyperspectral anomaly change detection based on autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3750-3762.

0 comments on commit a78c2e8

Please sign in to comment.