-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
38 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,31 +1,48 @@ | ||
# ACDA | ||
# Hyperspectral anomaly change detection based on autoencoder | ||
Pytorch implementation of JSTARS paper "Hyperspectral anomaly change detection based on autoencoder". | ||
![image](https://github.com/meiqihu/ACDA/blob/main/Figure_ACDA.png) | ||
# Paper | ||
[Hyperspectral anomaly change detection based on autoencoder](https://ieeexplore.ieee.org/document/9380336) | ||
|
||
Please cite our paper if you find it useful for your research. | ||
|
||
>@ARTICLE{9380336, | ||
author={Hu, Meiqi and Wu, Chen and Zhang, Liangpei and Du, Bo}, | ||
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, | ||
title={Hyperspectral Anomaly Change Detection Based on Autoencoder}, | ||
year={2021}, | ||
volume={14}, | ||
number={}, | ||
pages={3750-3762}, | ||
doi={10.1109/JSTARS.2021.3066508}} | ||
|
||
# Installation | ||
Install Pytorch 1.10.2 with Python 3.6 | ||
# Dataset | ||
Download the [dataset of Viareggio 2013](https://pan.baidu.com/s/1sRmdjsT-xl6DQJeoPIBNYA),passcode提取密码:qdqf | ||
|
||
This is a code of the paper "Hyperspectral anomaly change detection based on autoencoder" implemented on PyTorch. | ||
Pytorch is needed for running this code. | ||
[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning | ||
|
||
Paper is available on https://ieeexplore.ieee.org/abstract/document/9380336 | ||
>img_data.mat: | ||
My personal google web:https://scholar.google.com.hk/citations?hl=zh-CN&user=jxyAHdkAAAAJ | ||
>>img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2) | ||
-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- | ||
[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning | ||
1. img_data.mat: | ||
img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2) | ||
>pretrain_samples: | ||
>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.] | ||
>groundtruth_samples: | ||
>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; | ||
>random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; | ||
# Usage | ||
maincode.py | ||
|
||
链接:https://pan.baidu.com/s/1sRmdjsT-xl6DQJeoPIBNYA | ||
提取码:qdqf | ||
# More | ||
[My personal google web](https://scholar.google.com.hk/citations?hl=zh-CN&user=jxyAHdkAAAAJ) | ||
|
||
|
||
2. pretrain_samples: | ||
un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.] | ||
3. groundtruth_samples: | ||
un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; | ||
4. random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; | ||
|
||
-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- | ||
[Usage]: maincode.py | ||
|
||
-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- | ||
|
||
If you use this code for your research, please cite our papers: | ||
Hu M, Wu C, Zhang L, et al. Hyperspectral anomaly change detection based on autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3750-3762. |