Skip to content

maximtrp/tmplot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tmplot

Codacy coverage Codacy grade GitHub Workflow Status Documentation Status Downloads PyPI Issues

tmplot is a Python package for analysis and visualization of topic modeling results. It provides the interactive report interface that borrows much from LDAvis/pyLDAvis and builds upon it offering a number of metrics for calculating topic distances and a number of algorithms for calculating scatter coordinates of topics. It can be used to select closest and stable topics across multiple models.

Plots

Features

  • Supported models:

    • tomotopy: LDAModel, LLDAModel, CTModel, DMRModel, HDPModel, PTModel, SLDAModel, GDMRModel
    • gensim: LdaModel, LdaMulticore
    • bitermplus: BTM
  • Supported distance metrics:

    • Kullback-Leibler (symmetric and non-symmetric) divergence
    • Jenson-Shannon divergence
    • Jeffrey's divergence
    • Hellinger distance
    • Bhattacharyya distance
    • Total variation distance
    • Jaccard inversed index
  • Supported algorithms for calculating topics scatter coordinates:

    • t-SNE
    • SpectralEmbedding
    • MDS
    • LocallyLinearEmbedding
    • Isomap

Donate

If you find this package useful, please consider donating any amount of money. This will help me spend more time on supporting open-source software.

Buy Me A Coffee

Installation

The package can be installed from PyPi:

pip install tmplot

Or directly from this repository:

pip install git+https://github.com/maximtrp/tmplot.git

Dependencies

  • numpy
  • scipy
  • scikit-learn
  • pandas
  • altair
  • ipywidgets
  • tomotopy, gensim, and bitermplus (optional)

Quick example

# Importing packages
import tmplot as tmp
import pickle as pkl
import pandas as pd

# Reading a model from a file
with open('data/model.pkl', 'rb') as file:
    model = pkl.load(file)

# Reading documents from a file
docs = pd.read_csv('data/docs.txt.gz', header=None).values.ravel()

# Plotting topics as a scatter plot
topics_coords = tmp.prepare_coords(model)
tmp.plot_scatter_topics(topics_coords, size_col='size', label_col='label')

# Plotting terms probabilities
terms_probs = tmp.calc_terms_probs_ratio(phi, topic=0, lambda_=1)
tmp.plot_terms(terms_probs)

# Running report interface
tmp.report(model, docs=docs, width=250)

You can find more examples in the tutorial.