Skip to content

LambdaMART Ranking algorithm python implementation

Notifications You must be signed in to change notification settings

makarovNick/LambdaMart

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LambdaMART

Python implementation of LambdaMART

LambdaMART(**kwargs)

Parameters:

kwargs: XGBRegressor parameters
		default :
    (max_depth=3, learning_rate=0.1, n_estimators=100, verbosity=1, objective='reg:squarederror', booster='gbtree',
    tree_method='auto', n_jobs=1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, 
    colsample_bylevel=1, colsample_bynode=1, reg_alpha=0,reg_lambda=1,scale_pos_weight=1,base_score=0.5,random_state=0, 
    missing=None, num_parallel_tree=1, importance_type='gain', **kwargs)

Methods:

fit: Fits the model on the training data.
	Parameters: None
	Returns: None
predict: Predicts the scores for the test dataset.
	Parameters: Numpy array of documents with each document’s format is [query index, feature vector] 
	Returns: Numpy array of scores
save: Saves the model into file with the name given as a parameter
	Parameters: Filename
	Returns: None
load: Loads the model from the file given as a parameter
	Parameters: Filename
	Returns: None

About

LambdaMART Ranking algorithm python implementation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages