This repository holds the PyTorch implementation of our paper Hierarchical Multi-Task Network For Race, Gender and Facial Attractiveness Recognition.
- By leveraging
FiveCrops
inference, we are able to achieve better performance. - We also report
5 cross validation
results, since we find newly proposed models often use this metric instead of6/4 splitting strategy
.
- Install 3rd party libraries
sudo pip3 install -r requirements.txt
- Modify cfg.py to fit your path
Loss | MAE | RMSE | PC | Acc_R | Acc_G | Epoch | WD |
---|---|---|---|---|---|---|---|
MSE | 0.2556 | 0.3372 | 0.8693 | 99.68% | 98.53% | 170 | 5e-2 |
L1 | 0.2500 | 0.3299 | 0.8753 | 99.26% | 98.16% | 150 | 5e-2 |
Smooth L1 | 0.2531 | 0.3313 | 0.8738 | 99.54% | 98.58% | 170 | 5e-2 |
Smooth Huber | 0.2501 | 0.3263 | 0.8783 | 99.26% | 98.16% | 170 | 5e-2 |
Smooth Huber + FiveCrops (New) | 0.2439 | 0.3226 | 0.8801 | 99.45% | 98.58% | 149 | 5e-2 |
Methods | MAE | RMSE | PC |
---|---|---|---|
ResNeXt-50 | 0.2518 | 0.3325 | 0.8777 |
ResNet-18 | 0.2818 | 0.3703 | 0.8513 |
AlexNet | 0.2938 | 0.3819 | 0.8298 |
CRNet | 0.2816 | 0.3669 | 0.8450 |
HMTNet (Ours) | 0.2500 | 0.3299 | 0.8753 |
HMTNet (Ours) | 0.2501 | 0.3263 | 0.8783 |
HMTNet (Ours) | 0.2439 | 0.3226 | 0.8801 |
Round | Acc_r | Acc_g | MAE | RMSE | PC |
---|---|---|---|---|---|
1 | 99.54% | 98.53% | 0.2357 | 0.3091 | 0.8915 |
2 | 99.72% | 98.62% | 0.2365 | 0.3150 | 0.8884 |
3 | 99.54% | 99.17% | 0.2442 | 0.3235 | 0.8863 |
4 | 99.63% | 98.16% | 0.2335 | 0.3053 | 0.9006 |
5 | 99.36% | 99.26% | 0.2403 | 0.3178 | 0.8892 |
Avg | 99.56% | 98.75% | 0.2380 | 0.3141 | 0.8912 |
Methods | MAE | RMSE | PC |
---|---|---|---|
ResNeXt-50 | 0.2291 | 0.3017 | 0.8997 |
ResNet-18 | 0.2419 | 0.3166 | 0.8900 |
AlexNet | 0.2651 | 0.3481 | 0.8634 |
HMTNet | 0.2380 | 0.3141 | 0.8912 |
If you find this repository helps your research, please cite our paper:
@inproceedings{xu2019hierarchical,
title={Hierarchical Multi-Task Network For Race, Gender and Facial Attractiveness Recognition},
author={Xu, Lu and Fan, Heng and Xiang, Jinhai},
booktitle={2019 IEEE International Conference on Image Processing (ICIP)},
pages={3861--3865},
year={2019},
organization={IEEE}
}