Skip to content

Commit

Permalink
Merge pull request BVLC#1663 from longjon/accum-grad
Browse files Browse the repository at this point in the history
Decouple the computational batch size and minibatch size by accumulating gradients
  • Loading branch information
longjon committed Jan 1, 2015
2 parents 56681ed + d76653a commit 58e0d33
Show file tree
Hide file tree
Showing 10 changed files with 41 additions and 40 deletions.
7 changes: 5 additions & 2 deletions include/caffe/test/test_gradient_check_util.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -80,11 +80,14 @@ void GradientChecker<Dtype>::CheckGradientSingle(Layer<Dtype>* layer,
CHECK_EQ(top_count, bottom[blob_id]->count());
}
}
// First, figure out what blobs we need to check against.
// First, figure out what blobs we need to check against, and zero init
// parameter blobs.
vector<Blob<Dtype>*> blobs_to_check;
vector<bool> propagate_down(bottom.size(), check_bottom < 0);
for (int i = 0; i < layer->blobs().size(); ++i) {
blobs_to_check.push_back(layer->blobs()[i].get());
Blob<Dtype>* blob = layer->blobs()[i].get();
caffe_set(blob->count(), static_cast<Dtype>(0), blob->mutable_cpu_diff());
blobs_to_check.push_back(blob);
}
if (check_bottom < 0) {
for (int i = 0; i < bottom.size(); ++i) {
Expand Down
7 changes: 0 additions & 7 deletions src/caffe/layers/conv_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,6 @@ void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
if (this->param_propagate_down_[0]) {
caffe_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
if (this->bias_term_ && this->param_propagate_down_[1]) {
caffe_set(this->blobs_[1]->count(), Dtype(0),
this->blobs_[1]->mutable_cpu_diff());
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Expand Down
7 changes: 0 additions & 7 deletions src/caffe/layers/conv_layer.cu
Original file line number Diff line number Diff line change
Expand Up @@ -31,13 +31,6 @@ void ConvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->gpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_gpu_diff();
if (this->param_propagate_down_[0]) {
caffe_gpu_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
if (this->bias_term_ && this->param_propagate_down_[1]) {
caffe_gpu_set(this->blobs_[1]->count(), Dtype(0),
this->blobs_[1]->mutable_gpu_diff());
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->gpu_diff();
// Bias gradient, if necessary.
Expand Down
2 changes: 0 additions & 2 deletions src/caffe/layers/cudnn_conv_layer.cu
Original file line number Diff line number Diff line change
Expand Up @@ -54,12 +54,10 @@ void CuDNNConvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
if (this->param_propagate_down_[0]) {
weight = this->blobs_[0]->gpu_data();
weight_diff = this->blobs_[0]->mutable_gpu_diff();
caffe_gpu_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
Dtype* bias_diff = NULL;
if (this->bias_term_ && this->param_propagate_down_[1]) {
bias_diff = this->blobs_[1]->mutable_gpu_diff();
caffe_gpu_set(this->blobs_[1]->count(), Dtype(0), bias_diff);
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->gpu_diff();
Expand Down
7 changes: 0 additions & 7 deletions src/caffe/layers/deconv_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,6 @@ void DeconvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
if (this->param_propagate_down_[0]) {
caffe_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
if (this->bias_term_ && this->param_propagate_down_[1]) {
caffe_set(this->blobs_[1]->count(), Dtype(0),
this->blobs_[1]->mutable_cpu_diff());
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Expand Down
7 changes: 0 additions & 7 deletions src/caffe/layers/deconv_layer.cu
Original file line number Diff line number Diff line change
Expand Up @@ -31,13 +31,6 @@ void DeconvolutionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->gpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_gpu_diff();
if (this->param_propagate_down_[0]) {
caffe_gpu_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
if (this->bias_term_ && this->param_propagate_down_[1]) {
caffe_gpu_set(this->blobs_[1]->count(), Dtype(0),
this->blobs_[1]->mutable_gpu_diff());
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->gpu_diff();
const Dtype* bottom_data = bottom[i]->gpu_data();
Expand Down
4 changes: 2 additions & 2 deletions src/caffe/layers/inner_product_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -81,13 +81,13 @@ void InnerProductLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const Dtype* bottom_data = bottom[0]->cpu_data();
// Gradient with respect to weight
caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, N_, K_, M_, (Dtype)1.,
top_diff, bottom_data, (Dtype)0., this->blobs_[0]->mutable_cpu_diff());
top_diff, bottom_data, (Dtype)1., this->blobs_[0]->mutable_cpu_diff());
}
if (bias_term_ && this->param_propagate_down_[1]) {
const Dtype* top_diff = top[0]->cpu_diff();
// Gradient with respect to bias
caffe_cpu_gemv<Dtype>(CblasTrans, M_, N_, (Dtype)1., top_diff,
bias_multiplier_.cpu_data(), (Dtype)0.,
bias_multiplier_.cpu_data(), (Dtype)1.,
this->blobs_[1]->mutable_cpu_diff());
}
if (propagate_down[0]) {
Expand Down
4 changes: 2 additions & 2 deletions src/caffe/layers/inner_product_layer.cu
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,13 @@ void InnerProductLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const Dtype* bottom_data = bottom[0]->gpu_data();
// Gradient with respect to weight
caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans, N_, K_, M_, (Dtype)1.,
top_diff, bottom_data, (Dtype)0., this->blobs_[0]->mutable_gpu_diff());
top_diff, bottom_data, (Dtype)1., this->blobs_[0]->mutable_gpu_diff());
}
if (bias_term_ && this->param_propagate_down_[1]) {
const Dtype* top_diff = top[0]->gpu_diff();
// Gradient with respect to bias
caffe_gpu_gemv<Dtype>(CblasTrans, M_, N_, (Dtype)1., top_diff,
bias_multiplier_.gpu_data(), (Dtype)0.,
bias_multiplier_.gpu_data(), (Dtype)1.,
this->blobs_[1]->mutable_gpu_diff());
}
if (propagate_down[0]) {
Expand Down
3 changes: 2 additions & 1 deletion src/caffe/proto/caffe.proto
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ message NetParameter {
// NOTE
// Update the next available ID when you add a new SolverParameter field.
//
// SolverParameter next available ID: 35 (last added: stepvalue)
// SolverParameter next available ID: 36 (last added: iter_size)
message SolverParameter {
//////////////////////////////////////////////////////////////////////////////
// Specifying the train and test networks
Expand Down Expand Up @@ -118,6 +118,7 @@ message SolverParameter {
// Display the loss averaged over the last average_loss iterations
optional int32 average_loss = 33 [default = 1];
optional int32 max_iter = 7; // the maximum number of iterations
optional int32 iter_size = 35 [default = 1];
optional string lr_policy = 8; // The learning rate decay policy.
optional float gamma = 9; // The parameter to compute the learning rate.
optional float power = 10; // The parameter to compute the learning rate.
Expand Down
33 changes: 30 additions & 3 deletions src/caffe/solver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -188,14 +188,39 @@ void Solver<Dtype>::Solve(const char* resume_file) {
Snapshot();
}

// zero-init the params
for (int i = 0; i < net_->params().size(); ++i) {
shared_ptr<Blob<Dtype> > blob = net_->params()[i];
switch (Caffe::mode()) {
case Caffe::CPU:
caffe_set(blob->count(), static_cast<Dtype>(0),
blob->mutable_cpu_diff());
break;
case Caffe::GPU:
#ifndef CPU_ONLY
caffe_gpu_set(blob->count(), static_cast<Dtype>(0),
blob->mutable_gpu_diff());
#else
NO_GPU;
#endif
break;
}
}

if (param_.test_interval() && iter_ % param_.test_interval() == 0
&& (iter_ > 0 || param_.test_initialization())) {
TestAll();
}

const bool display = param_.display() && iter_ % param_.display() == 0;
net_->set_debug_info(display && param_.debug_info());
Dtype loss = net_->ForwardBackward(bottom_vec);
// accumulate the loss and gradient
Dtype loss = 0;
for (int i = 0; i < param_.iter_size(); ++i) {
loss += net_->ForwardBackward(bottom_vec);
}
loss /= param_.iter_size();
// average the loss across iterations for smoothed reporting
if (losses.size() < average_loss) {
losses.push_back(loss);
int size = losses.size();
Expand Down Expand Up @@ -451,7 +476,8 @@ void SGDSolver<Dtype>::ComputeUpdateValue() {
case Caffe::CPU:
for (int param_id = 0; param_id < net_params.size(); ++param_id) {
// Compute the value to history, and then copy them to the blob's diff.
Dtype local_rate = rate * net_params_lr[param_id];
Dtype local_rate = rate * net_params_lr[param_id]
/ this->param_.iter_size();
Dtype local_decay = weight_decay * net_params_weight_decay[param_id];

if (local_decay) {
Expand Down Expand Up @@ -487,7 +513,8 @@ void SGDSolver<Dtype>::ComputeUpdateValue() {
#ifndef CPU_ONLY
for (int param_id = 0; param_id < net_params.size(); ++param_id) {
// Compute the value to history, and then copy them to the blob's diff.
Dtype local_rate = rate * net_params_lr[param_id];
Dtype local_rate = rate * net_params_lr[param_id]
/ this->param_.iter_size();
Dtype local_decay = weight_decay * net_params_weight_decay[param_id];

if (local_decay) {
Expand Down

0 comments on commit 58e0d33

Please sign in to comment.