-
Notifications
You must be signed in to change notification settings - Fork 12.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[InstCombine] Split the FMul with reassoc into a helper function, NFC #71493
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The reassoc check is really hard to find because the handle branch it too large, so spilt it into a helper function.
@llvm/pr-subscribers-llvm-transforms Author: Allen (vfdff) ChangesThe reassoc check is really hard to find because the handle branch it too large, so spilt it into a helper function. Full diff: https://github.com/llvm/llvm-project/pull/71493.diff 2 Files Affected:
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineInternal.h b/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
index 34b10220ec88aba..68a8fb676d8d909 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
+++ b/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
@@ -98,6 +98,7 @@ class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
+ Instruction *foldFMulReassoc(BinaryOperator &I);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index bc784390c23be49..db0804380855e3a 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -560,6 +560,180 @@ Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
return nullptr;
}
+Instruction *InstCombinerImpl::foldFMulReassoc(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *X, *Y;
+ Constant *C;
+
+ // Reassociate constant RHS with another constant to form constant
+ // expression.
+ if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
+ // (C1 / X) * C --> (C * C1) / X
+ Constant *CC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
+ if (CC1 && CC1->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(CC1, X, &I);
+ }
+ if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
+ // (X / C1) * C --> X * (C / C1)
+ Constant *CDivC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
+ if (CDivC1 && CDivC1->isNormalFP())
+ return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
+
+ // If the constant was a denormal, try reassociating differently.
+ // (X / C1) * C --> X / (C1 / C)
+ Constant *C1DivC =
+ ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
+ if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
+ }
+
+ // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
+ // canonicalized to 'fadd X, C'. Distributing the multiply may allow
+ // further folds and (X * C) + C2 is 'fma'.
+ if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
+ // (X + C1) * C --> (X * C) + (C * C1)
+ if (Constant *CC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
+ }
+ }
+ if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
+ // (C1 - X) * C --> (C * C1) - (X * C)
+ if (Constant *CC1 =
+ ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
+ }
+ }
+ }
+
+ Value *Z;
+ if (match(&I,
+ m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), m_Value(Z)))) {
+ // Sink division: (X / Y) * Z --> (X * Z) / Y
+ Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
+ return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
+ }
+
+ // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
+ // nnan disallows the possibility of returning a number if both operands are
+ // negative (in that case, we should return NaN).
+ if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
+ match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
+ Value *XY = Builder.CreateFMulFMF(X, Y, &I);
+ Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
+ return replaceInstUsesWith(I, Sqrt);
+ }
+
+ // The following transforms are done irrespective of the number of uses
+ // for the expression "1.0/sqrt(X)".
+ // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
+ // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
+ // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
+ // has the necessary (reassoc) fast-math-flags.
+ if (I.hasNoSignedZeros() &&
+ match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
+ match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
+ return BinaryOperator::CreateFDivFMF(X, Y, &I);
+ if (I.hasNoSignedZeros() &&
+ match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
+ match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
+ return BinaryOperator::CreateFDivFMF(X, Y, &I);
+
+ // Like the similar transform in instsimplify, this requires 'nsz' because
+ // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
+ if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) {
+ // Peek through fdiv to find squaring of square root:
+ // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
+ if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(XX, Y, &I);
+ }
+ // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
+ if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(Y, XX, &I);
+ }
+ }
+
+ // pow(X, Y) * X --> pow(X, Y+1)
+ // X * pow(X, Y) --> pow(X, Y+1)
+ if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
+ m_Value(Y))),
+ m_Deferred(X)))) {
+ Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
+ Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
+ return replaceInstUsesWith(I, Pow);
+ }
+
+ if (I.isOnlyUserOfAnyOperand()) {
+ // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
+ if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
+ auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
+ auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+ // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
+ auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
+ auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+
+ // powi(x, y) * powi(x, z) -> powi(x, y + z)
+ if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
+ Y->getType() == Z->getType()) {
+ auto *YZ = Builder.CreateAdd(Y, Z);
+ auto *NewPow = Builder.CreateIntrinsic(
+ Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+
+ // exp(X) * exp(Y) -> exp(X + Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
+ return replaceInstUsesWith(I, Exp);
+ }
+
+ // exp2(X) * exp2(Y) -> exp2(X + Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
+ return replaceInstUsesWith(I, Exp2);
+ }
+ }
+
+ // (X*Y) * X => (X*X) * Y where Y != X
+ // The purpose is two-fold:
+ // 1) to form a power expression (of X).
+ // 2) potentially shorten the critical path: After transformation, the
+ // latency of the instruction Y is amortized by the expression of X*X,
+ // and therefore Y is in a "less critical" position compared to what it
+ // was before the transformation.
+ if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+ if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+
+ return nullptr;
+}
+
Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
@@ -607,176 +781,9 @@ Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);
- if (I.hasAllowReassoc()) {
- // Reassociate constant RHS with another constant to form constant
- // expression.
- if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
- Constant *C1;
- if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
- // (C1 / X) * C --> (C * C1) / X
- Constant *CC1 =
- ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
- if (CC1 && CC1->isNormalFP())
- return BinaryOperator::CreateFDivFMF(CC1, X, &I);
- }
- if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
- // (X / C1) * C --> X * (C / C1)
- Constant *CDivC1 =
- ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
- if (CDivC1 && CDivC1->isNormalFP())
- return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
-
- // If the constant was a denormal, try reassociating differently.
- // (X / C1) * C --> X / (C1 / C)
- Constant *C1DivC =
- ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
- if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
- return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
- }
-
- // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
- // canonicalized to 'fadd X, C'. Distributing the multiply may allow
- // further folds and (X * C) + C2 is 'fma'.
- if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
- // (X + C1) * C --> (X * C) + (C * C1)
- if (Constant *CC1 = ConstantFoldBinaryOpOperands(
- Instruction::FMul, C, C1, DL)) {
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
- }
- }
- if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
- // (C1 - X) * C --> (C * C1) - (X * C)
- if (Constant *CC1 = ConstantFoldBinaryOpOperands(
- Instruction::FMul, C, C1, DL)) {
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
- }
- }
- }
-
- Value *Z;
- if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
- m_Value(Z)))) {
- // Sink division: (X / Y) * Z --> (X * Z) / Y
- Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
- return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
- }
-
- // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
- // nnan disallows the possibility of returning a number if both operands are
- // negative (in that case, we should return NaN).
- if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
- match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
- Value *XY = Builder.CreateFMulFMF(X, Y, &I);
- Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
- return replaceInstUsesWith(I, Sqrt);
- }
-
- // The following transforms are done irrespective of the number of uses
- // for the expression "1.0/sqrt(X)".
- // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
- // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
- // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
- // has the necessary (reassoc) fast-math-flags.
- if (I.hasNoSignedZeros() &&
- match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
- if (I.hasNoSignedZeros() &&
- match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
-
- // Like the similar transform in instsimplify, this requires 'nsz' because
- // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
- if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
- Op0->hasNUses(2)) {
- // Peek through fdiv to find squaring of square root:
- // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
- if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(XX, Y, &I);
- }
- // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
- if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(Y, XX, &I);
- }
- }
-
- // pow(X, Y) * X --> pow(X, Y+1)
- // X * pow(X, Y) --> pow(X, Y+1)
- if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
- m_Value(Y))),
- m_Deferred(X)))) {
- Value *Y1 =
- Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
- Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
- return replaceInstUsesWith(I, Pow);
- }
-
- if (I.isOnlyUserOfAnyOperand()) {
- // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
- if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
- auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
- auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
- return replaceInstUsesWith(I, NewPow);
- }
- // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
- if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
- auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
- auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
- return replaceInstUsesWith(I, NewPow);
- }
-
- // powi(x, y) * powi(x, z) -> powi(x, y + z)
- if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
- Y->getType() == Z->getType()) {
- auto *YZ = Builder.CreateAdd(Y, Z);
- auto *NewPow = Builder.CreateIntrinsic(
- Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
- return replaceInstUsesWith(I, NewPow);
- }
-
- // exp(X) * exp(Y) -> exp(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
- return replaceInstUsesWith(I, Exp);
- }
-
- // exp2(X) * exp2(Y) -> exp2(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
- return replaceInstUsesWith(I, Exp2);
- }
- }
-
- // (X*Y) * X => (X*X) * Y where Y != X
- // The purpose is two-fold:
- // 1) to form a power expression (of X).
- // 2) potentially shorten the critical path: After transformation, the
- // latency of the instruction Y is amortized by the expression of X*X,
- // and therefore Y is in a "less critical" position compared to what it
- // was before the transformation.
- if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
- Op1 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
- Op0 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- }
+ if (I.hasAllowReassoc())
+ if (Instruction *FoldedMul = foldFMulReassoc(I))
+ return FoldedMul;
// log2(X * 0.5) * Y = log2(X) * Y - Y
if (I.isFast()) {
|
arsenm
approved these changes
Nov 7, 2023
This was referenced Nov 8, 2023
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
The reassoc check is really hard to find because the handle branch it too large, so spilt it into a helper function.