-
Notifications
You must be signed in to change notification settings - Fork 12k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][sparse] Populate lvlToDim #68937
Conversation
✅ With the latest revision this PR passed the Python code formatter. |
✅ With the latest revision this PR passed the C/C++ code formatter. |
@llvm/pr-subscribers-mlir-sparse @llvm/pr-subscribers-mlir Author: Yinying Li (yinying-lisa-li) ChangesUpdates:
Verification of lvlToDim that user provides will be implemented in the next PR. Full diff: https://github.com/llvm/llvm-project/pull/68937.diff 12 Files Affected:
diff --git a/mlir/include/mlir-c/Dialect/SparseTensor.h b/mlir/include/mlir-c/Dialect/SparseTensor.h
index 7e47e54e7361d54..859a4f0dd9f52c8 100644
--- a/mlir/include/mlir-c/Dialect/SparseTensor.h
+++ b/mlir/include/mlir-c/Dialect/SparseTensor.h
@@ -51,11 +51,10 @@ MLIR_CAPI_EXPORTED bool
mlirAttributeIsASparseTensorEncodingAttr(MlirAttribute attr);
/// Creates a `sparse_tensor.encoding` attribute with the given parameters.
-/// TODO: add a version that supplied lvlToDim when it cannot be inferred
MLIR_CAPI_EXPORTED MlirAttribute mlirSparseTensorEncodingAttrGet(
MlirContext ctx, intptr_t lvlRank,
enum MlirSparseTensorDimLevelType const *lvlTypes, MlirAffineMap dimToLvl,
- int posWidth, int crdWidth);
+ MlirAffineMap lvlTodim, int posWidth, int crdWidth);
/// Returns the level-rank of the `sparse_tensor.encoding` attribute.
MLIR_CAPI_EXPORTED intptr_t
diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h
index 3eb9ce010cb006f..8cbedc560089f7d 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h
@@ -159,6 +159,13 @@ inline bool hasAnySparseOperandOrResult(Operation *op) {
return hasAnySparseOperand(op) || hasAnySparseResult(op);
}
+//
+// Inference.
+//
+
+AffineMap inferLvlToDim(AffineMap dimToLvl, MLIRContext *context);
+AffineMap inverseBlockSparsity(AffineMap dimToLvl, MLIRContext *context);
+
//
// Reordering.
//
diff --git a/mlir/lib/Bindings/Python/DialectSparseTensor.cpp b/mlir/lib/Bindings/Python/DialectSparseTensor.cpp
index 8e9e0b6baf76c20..9bde3a443ecfeca 100644
--- a/mlir/lib/Bindings/Python/DialectSparseTensor.cpp
+++ b/mlir/lib/Bindings/Python/DialectSparseTensor.cpp
@@ -41,16 +41,17 @@ static void populateDialectSparseTensorSubmodule(const py::module &m) {
.def_classmethod(
"get",
[](py::object cls, std::vector<MlirSparseTensorDimLevelType> lvlTypes,
- std::optional<MlirAffineMap> dimToLvl, int posWidth, int crdWidth,
+ std::optional<MlirAffineMap> dimToLvl,
+ std::optional<MlirAffineMap> lvlToDim, int posWidth, int crdWidth,
MlirContext context) {
- // TODO: provide dimToLvl
return cls(mlirSparseTensorEncodingAttrGet(
context, lvlTypes.size(), lvlTypes.data(),
- dimToLvl ? *dimToLvl : MlirAffineMap{nullptr}, posWidth,
+ dimToLvl ? *dimToLvl : MlirAffineMap{nullptr},
+ lvlToDim ? *lvlToDim : MlirAffineMap{nullptr}, posWidth,
crdWidth));
},
py::arg("cls"), py::arg("lvl_types"), py::arg("dim_to_lvl"),
- py::arg("pos_width"), py::arg("crd_width"),
+ py::arg("lvl_to_dim"), py::arg("pos_width"), py::arg("crd_width"),
py::arg("context") = py::none(),
"Gets a sparse_tensor.encoding from parameters.")
.def_property_readonly(
@@ -71,6 +72,14 @@ static void populateDialectSparseTensorSubmodule(const py::module &m) {
return {};
return ret;
})
+ .def_property_readonly(
+ "lvl_to_dim",
+ [](MlirAttribute self) -> std::optional<MlirAffineMap> {
+ MlirAffineMap ret = mlirSparseTensorEncodingAttrGetLvlToDim(self);
+ if (mlirAffineMapIsNull(ret))
+ return {};
+ return ret;
+ })
.def_property_readonly("pos_width",
mlirSparseTensorEncodingAttrGetPosWidth)
.def_property_readonly("crd_width",
diff --git a/mlir/lib/CAPI/Dialect/SparseTensor.cpp b/mlir/lib/CAPI/Dialect/SparseTensor.cpp
index bf3a4ad5e7a1683..309d5ff5fedb90e 100644
--- a/mlir/lib/CAPI/Dialect/SparseTensor.cpp
+++ b/mlir/lib/CAPI/Dialect/SparseTensor.cpp
@@ -48,15 +48,17 @@ bool mlirAttributeIsASparseTensorEncodingAttr(MlirAttribute attr) {
MlirAttribute
mlirSparseTensorEncodingAttrGet(MlirContext ctx, intptr_t lvlRank,
MlirSparseTensorDimLevelType const *lvlTypes,
- MlirAffineMap dimToLvl, int posWidth,
- int crdWidth) {
+ MlirAffineMap dimToLvl, MlirAffineMap lvlToDim,
+ int posWidth, int crdWidth) {
SmallVector<DimLevelType> cppLvlTypes;
cppLvlTypes.reserve(lvlRank);
for (intptr_t l = 0; l < lvlRank; ++l)
cppLvlTypes.push_back(static_cast<DimLevelType>(lvlTypes[l]));
- mlir::AffineMap lvlToDim; // TODO: provide in API
+ auto unwrappedLvlToDim = unwrap(lvlToDim);
+ if (!unwrappedLvlToDim)
+ unwrappedLvlToDim = inferLvlToDim(unwrap(dimToLvl), unwrap(ctx));
return wrap(SparseTensorEncodingAttr::get(unwrap(ctx), cppLvlTypes,
- unwrap(dimToLvl), lvlToDim,
+ unwrap(dimToLvl), unwrappedLvlToDim,
posWidth, crdWidth));
}
diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index 61522fb0dcd24b5..212de502640ef7b 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -293,9 +293,8 @@ Type SparseTensorEncodingAttr::getCrdType() const {
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withDimToLvl(AffineMap dimToLvl) const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
- // TODO: infer lvlToDim
return SparseTensorEncodingAttr::get(getContext(), getLvlTypes(), dimToLvl,
- /*lvlToDim*/ AffineMap(), getPosWidth(),
+ getLvlToDim(), getPosWidth(),
getCrdWidth());
}
@@ -583,7 +582,7 @@ Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
#undef RETURN_ON_FAIL
// Construct struct-like storage for attribute.
- AffineMap lvlToDim; // TODO: infer
+ AffineMap lvlToDim = inferLvlToDim(dimToLvl, parser.getContext());
return parser.getChecked<SparseTensorEncodingAttr>(
parser.getContext(), lvlTypes, dimToLvl, lvlToDim, posWidth, crdWidth,
dimSlices);
@@ -749,6 +748,71 @@ mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
return nullptr;
}
+AffineMap mlir::sparse_tensor::inferLvlToDim(AffineMap dimToLvl,
+ MLIRContext *context) {
+ auto map = static_cast<AffineMap>(dimToLvl);
+ AffineMap lvlToDim;
+ // TODO: support ELL instead of returning an empty lvlToDim.
+ if (!map || map.getNumSymbols() != 0) {
+ lvlToDim = AffineMap();
+ } else if (map.isPermutation()) {
+ lvlToDim = inversePermutation(map);
+ } else {
+ lvlToDim = inverseBlockSparsity(map, context);
+ }
+ return lvlToDim;
+}
+
+AffineMap mlir::sparse_tensor::inverseBlockSparsity(AffineMap dimToLvl,
+ MLIRContext *context) {
+ SmallVector<AffineExpr> lvlExprs;
+ auto numLvls = dimToLvl.getNumResults();
+ lvlExprs.reserve(numLvls);
+ // lvlExprComponents stores information of the floordiv and mod operations
+ // applied to the same dimension, so as to build the lvlToDim map.
+ // Map key is the position of the dimension in dimToLvl.
+ // Map value is a SmallVector that contains lvl var for floordiv, multiplier,
+ // lvl var for mod in dimToLvl.
+ // For example, for il = i floordiv 2 and ii = i mod 2, the SmalleVector
+ // would be [il, 2, ii]. It could be used to build the AffineExpr
+ // i = il * 2 + ii in lvlToDim.
+ std::map<unsigned, SmallVector<AffineExpr, 3>> lvlExprComponents;
+ for (unsigned i = 0, n = numLvls; i < n; i++) {
+ auto result = dimToLvl.getResult(i);
+ if (auto binOp = result.dyn_cast<AffineBinaryOpExpr>()) {
+ if (result.getKind() == AffineExprKind::FloorDiv) {
+ SmallVector<AffineExpr, 3> components;
+ // Level variable for floordiv.
+ components.push_back(getAffineDimExpr(i, context));
+ // Multiplier.
+ components.push_back(binOp.getRHS());
+ auto pos = binOp.getLHS().dyn_cast<AffineDimExpr>().getPosition();
+ lvlExprComponents[pos] = components;
+ } else if (result.getKind() == AffineExprKind::Mod) {
+ auto pos = binOp.getLHS().dyn_cast<AffineDimExpr>().getPosition();
+ assert(lvlExprComponents.find(pos) != lvlExprComponents.end() &&
+ "expected floordiv before mod");
+ // Level variable for mod.
+ lvlExprComponents[pos].push_back(getAffineDimExpr(i, context));
+ } else {
+ assert(false && "expected floordiv or mod");
+ }
+ } else {
+ lvlExprs.push_back(getAffineDimExpr(i, context));
+ }
+ }
+ for (auto &components : lvlExprComponents) {
+ assert(components.second.size() == 3 &&
+ "expected 3 components to build lvlExprs");
+ auto mulOp = getAffineBinaryOpExpr(
+ AffineExprKind::Mul, components.second[0], components.second[1]);
+ auto addOp =
+ getAffineBinaryOpExpr(AffineExprKind::Add, mulOp, components.second[2]);
+ lvlExprs.push_back(addOp);
+ }
+ return dimToLvl.get(dimToLvl.getNumResults(), 0, lvlExprs, context);
+}
+
bool mlir::sparse_tensor::isCOOType(SparseTensorEncodingAttr enc,
Level startLvl, bool isUnique) {
if (!enc ||
@@ -811,7 +875,7 @@ RankedTensorType sparse_tensor::getCOOFromTypeWithOrdering(RankedTensorType rtt,
// default value.
unsigned posWidth = src.getPosWidth();
unsigned crdWidth = src.getCrdWidth();
- AffineMap invPerm; // TODO
+ auto invPerm = src.getLvlToDim();
auto enc = SparseTensorEncodingAttr::get(src.getContext(), lvlTypes, lvlPerm,
invPerm, posWidth, crdWidth);
return RankedTensorType::get(src.getDimShape(), src.getElementType(), enc);
diff --git a/mlir/test/CAPI/sparse_tensor.c b/mlir/test/CAPI/sparse_tensor.c
index 33ee8e784096a18..3bd1508cf299a3d 100644
--- a/mlir/test/CAPI/sparse_tensor.c
+++ b/mlir/test/CAPI/sparse_tensor.c
@@ -40,6 +40,8 @@ static int testRoundtripEncoding(MlirContext ctx) {
// CHECK: level_type: 4
// CHECK: level_type: 8
// CHECK: level_type: 8
+ MlirAffineMap lvlToDim =
+ mlirSparseTensorEncodingAttrGetLvlToDim(originalAttr);
int lvlRank = mlirSparseTensorEncodingGetLvlRank(originalAttr);
enum MlirSparseTensorDimLevelType *lvlTypes =
malloc(sizeof(enum MlirSparseTensorDimLevelType) * lvlRank);
@@ -53,9 +55,8 @@ static int testRoundtripEncoding(MlirContext ctx) {
// CHECK: crdWidth: 64
int crdWidth = mlirSparseTensorEncodingAttrGetCrdWidth(originalAttr);
fprintf(stderr, "crdWidth: %d\n", crdWidth);
- // TODO: lvlToDim
MlirAttribute newAttr = mlirSparseTensorEncodingAttrGet(
- ctx, lvlRank, lvlTypes, dimToLvl, posWidth, crdWidth);
+ ctx, lvlRank, lvlTypes, dimToLvl, lvlToDim, posWidth, crdWidth);
mlirAttributeDump(newAttr); // For debugging filecheck output.
// CHECK: equal: 1
fprintf(stderr, "equal: %d\n", mlirAttributeEqual(originalAttr, newAttr));
diff --git a/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir b/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir
index ae3805d8b774176..ea8217ab6e3f233 100644
--- a/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir
+++ b/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir
@@ -160,6 +160,24 @@ func.func private @BSR(%arg0: tensor<?x?xf64, #BSR>) {
// -----
+#BCSR = #sparse_tensor.encoding<{
+ map = ( i, j, k ) ->
+ ( i floordiv 2 : dense,
+ j floordiv 3 : dense,
+ k floordiv 4 : compressed,
+ i mod 2 : dense,
+ j mod 3 : dense,
+ k mod 4 : dense
+ )
+}>
+
+// CHECK-LABEL: func private @BCSR(
+// CHECK-SAME: tensor<?x?x?xf64, #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 floordiv 2 : dense, d1 floordiv 3 : dense, d2 floordiv 4 : compressed, d0 mod 2 : dense, d1 mod 3 : dense, d2 mod 4 : dense) }>>
+func.func private @BCSR(%arg0: tensor<?x?x?xf64, #BCSR>) {
+ return
+}
+// -----
+
#BSR_explicit = #sparse_tensor.encoding<{
map =
{il, jl, ii, jj}
@@ -194,3 +212,37 @@ func.func private @BSR_explicit(%arg0: tensor<?x?xf64, #BSR_explicit>) {
func.func private @NV_24(%arg0: tensor<?x?xf64, #NV_24>) {
return
}
+
+// -----
+
+#NV_24 = #sparse_tensor.encoding<{
+ map = ( i, j, k ) ->
+ ( i : dense,
+ j : dense,
+ k floordiv 4 : dense,
+ k mod 4 : block2_4
+ )
+}>
+
+// CHECK-LABEL: func private @NV_24(
+// CHECK-SAME: tensor<?x?x?xf64, #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 floordiv 4 : dense, d2 mod 4 : block2_4) }>>
+func.func private @NV_24(%arg0: tensor<?x?x?xf64, #NV_24>) {
+ return
+}
+
+// -----
+
+#NV_24 = #sparse_tensor.encoding<{
+ map = ( i, j, k ) ->
+ ( i : dense,
+ k floordiv 4 : dense,
+ j : dense,
+ k mod 4 : block2_4
+ )
+}>
+
+// CHECK-LABEL: func private @NV_24(
+// CHECK-SAME: tensor<?x?x?xf64, #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d2 floordiv 4 : dense, d1 : dense, d2 mod 4 : block2_4) }>>
+func.func private @NV_24(%arg0: tensor<?x?x?xf64, #NV_24>) {
+ return
+}
\ No newline at end of file
diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
index 0cdc7c88bd97fb8..1f9b6360383180c 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_SDDMM.py
@@ -155,7 +155,7 @@ def main():
for iwidth in [32]:
for e in [True]:
attr = st.EncodingAttr.get(
- level, ordering, pwidth, iwidth
+ level, ordering, None, pwidth, iwidth
)
opt = f"parallelization-strategy=none"
compiler = sparse_compiler.SparseCompiler(
diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
index 01d74a4dc82fa1d..69f6cdcea967fae 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py
@@ -145,7 +145,7 @@ def main():
for pwidth in bitwidths:
for iwidth in bitwidths:
attr = st.EncodingAttr.get(
- level, ordering, pwidth, iwidth
+ level, ordering, None, pwidth, iwidth
)
build_compile_and_run_SpMM(attr, compiler)
count = count + 1
diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
index 8f3f4e5af1e58ef..7d7749008020515 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
@@ -91,7 +91,7 @@ def main():
for level in levels:
for ordering in orderings:
for bwidth in bitwidths:
- attr = st.EncodingAttr.get(level, ordering, bwidth, bwidth)
+ attr = st.EncodingAttr.get(level, ordering, None, bwidth, bwidth)
build_compile_and_run_output(attr, compiler)
count = count + 1
diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py
index ef266672ce42afc..841b02bc10c8bec 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py
+++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_stress.py
@@ -227,7 +227,7 @@ def main():
for pwidth in bitwidths:
for iwidth in bitwidths:
attr = st.EncodingAttr.get(
- level, ordering, pwidth, iwidth
+ level, ordering, None, pwidth, iwidth
)
types.append(ir.RankedTensorType.get(shape, f64, attr))
#
diff --git a/mlir/test/python/dialects/sparse_tensor/dialect.py b/mlir/test/python/dialects/sparse_tensor/dialect.py
index d80b878323377a4..240db6ebd1d1eb3 100644
--- a/mlir/test/python/dialects/sparse_tensor/dialect.py
+++ b/mlir/test/python/dialects/sparse_tensor/dialect.py
@@ -32,12 +32,14 @@ def testEncodingAttr1D():
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: None
print(f"dim_to_lvl: {casted.dim_to_lvl}")
+ # CHECK: lvl_to_dim: None
+ print(f"lvl_to_dim: {casted.lvl_to_dim}")
# CHECK: pos_width: 16
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
- created = st.EncodingAttr.get(casted.lvl_types, None, 0, 0)
+ created = st.EncodingAttr.get(casted.lvl_types, None, None, 0, 0)
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
print(created)
# CHECK: created_equal: False
@@ -72,12 +74,20 @@ def testEncodingAttr2D():
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: (d0, d1) -> (d1, d0)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
+ # CHECK: lvl_to_dim: (d0, d1) -> (d1, d0)
+ print(f"lvl_to_dim: {casted.lvl_to_dim}")
# CHECK: pos_width: 8
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
- created = st.EncodingAttr.get(casted.lvl_types, casted.dim_to_lvl, 8, 32)
+ created = st.EncodingAttr.get(
+ casted.lvl_types,
+ casted.dim_to_lvl,
+ casted.lvl_to_dim,
+ 8,
+ 32,
+ )
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
print(created)
# CHECK: created_equal: True
|
978d90c
to
e3ac322
Compare
Updates: 1. Infer lvlToDim from dimToLvl 2. Add more tests for block sparsity 3. Finish TODOs related to lvlToDim, including adding lvlToDim to python binding Verification of lvlToDim that user provides will be implemented in the next PR.
1285dc6
to
808d878
Compare
Updates:
Verification of lvlToDim that user provides will be implemented in the next PR.