Skip to content

Benchmarks for popular classification and object detection models on CPUs and GPUs

Notifications You must be signed in to change notification settings

linbo0518/CVBenchmarks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

CV Benchmarks

Benchmarks for popular classification and object detection models on CPUs and GPUs.

Pretrained model parameters provided by gluon-cv model zoo

Env Setup

  • CPU: Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz
  • GPU: NVIDIA TITAN XP
  • RAM: 252G
  • OS: Ubuntu 16.04
  • CUDA: 8.0.61
  • cuDNN: 5.1.5
  • Python: 3.6.8
  • MXNet: 1.4.0 w/o mkl
  • TVM: 0.6.dev

Classification

Network Arch Input Shape CPU time(ms) GPU time(ms) VRAM(MB) TVM CPU time(ms) TVM GPU time(ms) TVM VRAM(MB) Citation
MobileNet (1.0) 1x3x224x224 48.00 4.55 477 3.10 0.92 403 [1]
MobileNet v2 (1.0) 1x3x224x224 62.06 8.53 483 3.12 1.65 407 [2]
VGG16 1x3x224x224 420.59 5.74 1577 82.82 4.23 1053 [7]
ResNet50 1x3x224x224 93.07 10.81 701 18.38 3.90 529 [3]

Detection

Network Arch (Backbone) Input Shape CPU time(ms) GPU time(ms) VRAM(MB) TVM CPU time(ms) TVM GPU time(ms) TVM VRAM(MB) Citation
Faster RCNN (ResNet50) 1x3x800x800 15480.15 371.80 2945 tvm not support yet tvm not support yet tvm not support yet [4]
SSD (MobileNet (1.0)) 1x3x512x512 408.30 24.29 775 300.18 tvm not support yet tvm not support yet [5]
SSD (ResNet50) 1x3x512x512 678.04 33.02 1065 377.31 tvm not support yet tvm not support yet [5]
YOLO v3 (MobileNet (1.0)) 1x3x416x416 479.82 17.72 771 61.70 tvm not support yet tvm not support yet [6]
YOLO v3 (DarkNet53) 1x3x416x416 843.06 27.55 1109 119.26 tvm not support yet tvm not support yet [6]

Env Setup

  • CPU: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
  • GPU: GeForce GTX 1080 Ti
  • RAM: 31.3G
  • OS: Ubuntu 16.04
  • CUDA: 10.0.130
  • cuDNN: 7.5.0
  • Python: 3.6.8
  • MXNet: 1.4.0 w/ mkl
  • TVM: 0.6.dev

Classification

Network Arch Input Shape CPU time(ms) GPU time(ms) VRAM(MB) TVM CPU time(ms) TVM GPU time(ms) TVM VRAM(MB) Citation
MobileNet (1.0) 1x3x224x224 8.30 2.22 503 5.92 0.74 407 [1]
MobileNet v2 (1.0) 1x3x224x224 18.85 3.98 505 4.29 0.89 409 [2]
VGG16 1x3x224x224 89.55 5.46 1605 178.67 4.21 1061 [7]
ResNet50 1x3x224x224 28.13 6.37 723 42.74 3.42 535 [3]

Detection

Network Arch (Backbone) Input Shape CPU time(ms) GPU time(ms) VRAM(MB) TVM CPU time(ms) TVM GPU time(ms) TVM VRAM(MB) Citation
Faster RCNN (ResNet50) 1x3x800x800 5565.82 326.32 2949 tvm not support yet tvm not support yet tvm not support yet [4]
SSD (MobileNet (1.0)) 1x3x512x512 95.28 15.93 777 726.48 tvm not support yet tvm not support yet [5]
SSD (ResNet50) 1x3x512x512 211.78 23.25 1069 941.38 tvm not support yet tvm not support yet [5]
YOLO v3 (MobileNet (1.0)) 1x3x416x416 165.48 10.96 775 156.73 tvm not support yet tvm not support yet [6]
YOLO v3 (DarkNet53) 1x3x416x416 315.16 18.64 1105 359.61 tvm not support yet tvm not support yet [6]

Env Setup

  • CPU: Intel Core i7-6700HQ @ 2.60GHz
  • GPU: None
  • RAM: 16.0G
  • OS: macOS 10.14
  • CUDA: None
  • cuDNN: None
  • Python: 3.6.8
  • MXNet: 1.4.0 w/o mkl
  • TVM: 0.6.dev

Classification

Network Arch Input Shape CPU time(ms) TVM CPU time(ms) Citation
MobileNet (1.0) 1x3x224x224 34.05 8.71 [1]
MobileNet v2 (1.0) 1x3x224x224 64.42 8.41 [2]
VGG16 1x3x224x224 261.23 212.48 [7]
ResNet50 1x3x224x224 80.02 67.62 [3]

Detection

Network Arch (Backbone) Input Shape CPU time(ms) TVM CPU time(ms) Citation
Faster RCNN (ResNet50) 1x3x800x800 16197.89 tvm not support yet [4]
SSD (MobileNet (1.0)) 1x3x512x512 372.46 1111.51 [5]
SSD (ResNet50) 1x3x512x512 656.17 1350.06 [5]
YOLO v3 (MobileNet (1.0)) 1x3x416x416 562.84 205.64 [6]
YOLO v3 (DarkNet53) 1x3x416x416 841.82 533.84 [6]

P.S. the TVM CPU time of SSD should be caused by some kind of bug or mistake, the result is really the case.


Releases

No releases published

Packages

No packages published

Languages