Skip to content
/ VALOR Public
forked from TXH-mercury/VALOR

Codes and Models for VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset

Notifications You must be signed in to change notification settings

lihanddd/VALOR

 
 

Repository files navigation

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset

  • This is the official repository of VALOR which provides training&testing code and pretraining checkpoints.
  • VALOR-32K dataset can be downloaded from project page.
  • VALOR-1m will be released soon.
  • Paper w/o audio files embeded in PDF is on Arxiv.
  • Paper w audio files embeded in PDF can be found on project page.

Building Environment

  • VALOR is implemented based on Pytorch. We use pytorch-1.9.0 and cuda-11.1. Other version could be also compatible.
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
  • apex is needed.
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • install needed packages.
sh preinstall.sh

Download Checkpoints

  • pretrained_weights (BERT,CLIP,VideoSwin). Put pretrained_weights dir under main path. (VALOR/pretrained_weights)
  • VALOR-base. Put VALOR-base under the output dir. (VALOR/output/VALOR-base)
  • VALOR-large. Put VALOR-large under the output dir. (VALOR/output/VALOR-large)

Prepare Datasets

VALOR is pretrained and tested on multiple vision-language, audio-language and audiovisual-language datasets. e.g. PRETRAIN: VALOR-1M, WebVid-2.5M, CC-3M (VALOR-base) TEST: VALOR-32K, MSRVTT, MSVD, DiDeMo, LSMDC, ActivityNet, VATEX, AudioCaps, ClothoV1, TGIF-Frame, MSCOCO, VQAV2... We here take MSRVTT as an example to show the data processing procedures, other datasets take a similar way.

  • make dir VALOR/datasets/MSRVTT
  • download raw videos from website, and put them in MSRVTT/raw_videos
  • extract video frames (.jpg) and audio files (.wav). Utilizing utils/extract_frame_and_wav_multiprocess.py (Note: VALOR use this offline extracted frames and audios for training and testing for it's fast I/O speed. You may adjust to read raw videos via decord library, and need to change VideoMapper and AudioMapper classes in data/data.py.)
  • prepare id_files (standardsplit_train_id.json, standardsplit_test_id.json, 1KAsplit_train_id.json, 1KAsplit_test_id.json). The format is List(Str) ['video0', 'video1', ...]. The former two are for video captioning and video qa, while the latter two are for video retrieval.
  • prepare txt_mapper.json. txt_mapper files map videoIDs to its descriptions. Format {'video0':['desc1','desc2',...'desc20']}. For VideoQA task, the format is {'video0':[{'question':'what color is ...?', 'answer':'red'},{'question':'Is the boy ...?', 'answer':'yes'}]}
  • prepare caption_annotation.json. This file is used for computing caption metrics. format: [{'video_id':'video0','caption','A boy is ...'}, {'video_id':'video1','caption','A girl is ...'}]

The processed dataset path should be following:

   ├── datasets
   │   ├── msrvtt
   │   │   ├── raw_videos
   │   │   │    ├── video0.mp4
   │   │   │    └── video1.mp4
   │   │   ├── frames_fps4
   │   │   │    ├── video0
   │   │   │    │   ├──img_0001.jpg
   │   │   │    │   └──img_0002.jpg
   │   │   │    └── video1
   │   │   │    │   ├──img_0001.jpg
   │   │   │    │   └──img_0002.jpg
   │   │   ├── audio_22050hz
   │   │   │    ├── video1.wav
   │   │   │    └── video3.wav
   │   │   ├── standardsplit_train_id.json
   │   │   ├── standardsplit_test_id.json
   │   │   ├── 1KAsplit_train_id.json
   │   │   ├── 1KAsplit_test_id.json
   │   │   ├── txt_mapper.json
   │   │   ├── txt_mapper_1kAsplit_test.json    
   │   │   ├── txt_mapper_vqa.json    
   │   │   └── caption_annotation.json    

We provide processed json files for most finetuneing datasets here, and you only need to download and extract raw videos of each dataset.

Finetune Model

  • finetune retrieval tasks
sh scripts/finetune_ret.sh $pretrain_path(output/VALOR_base)
  • finetune captioning tasks
sh scripts/finetune_cap.sh $pretrain_path(output/VALOR_base)
  • finetune QA tasks
sh scripts/finetune_qa.sh $pretrain_path(output/VALOR_base)

The finetuning output path will be the subdir of $pretrain_path

Test Model

For example, the cmd for finetuning retrieval model in scripts/finetune_ret.sh is as follows:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8   --master_port 32711 ./train.py \
--pretrain_dir $basedir \
--config ./config/fast-retrieval-msrvtt.json \
--output_dir $basedir'/ret-msrvtt-lr2e-5-bs64-epoch5'   \
--learning_rate 2e-5  \
--train_video_sample_num 4 \
--test_video_sample_num 8  \
--save_best true \

if you want to test model, just add following two rows to the cmd:

--zero_shot \
--checkpoint $checkpoint_save_path(.pt)

Pretrain Model

sh scripts/pretrain.sh

Customize

VALOR's framework is easy to expand new tasks/datasets. what you need to do is

  1. prepare dataset as illustrated above
  2. write config file (copy a config file and change 'data_cfg')
  • In development stage, you can simply use cmd to overwrite config file. The most important args are : --learning_rate --train_batch_size --train_video_sample_num --test_video_sample_num --train_audio_sample_num --test_audio_sample_num --video_resolution --train_epoch --train_task --test_task

  • To control task and used modality group, you can rewrite train_task by 'task%modality_group1%modality_group2' For example: finetuning text-to-audio retrieval 'ret%ta' finetuning text-to-video retrieval 'ret%tv' or 'ret%tva'

  • Other settings --fp16 (default: True) --checkpointing (default: False)

About

Codes and Models for VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 59.1%
  • Python 39.7%
  • Shell 1.2%