cd cart
make
cd random_forest
make
- -t ../data/train_file
- input train file to matrix
- -s ../data/result_file
- output predict labels to result file
- -p 16
- use 16 threads in a thread pool to train trees
- -n 1000
- use 1000 trees in the forest
- -f 30
- use a subset of 30 features for each tree
cd gradient_boosting
./run.sh
- train_path = "examples/train_reg.txt"
- eval[test] = "examples/test_reg.txt"
- test_reg = "examples/test_reg.txt"
-
booster = gbtree
-
objective = reg:linear
-
eta = 1.0
-
gamma = 1.0
-
min_child_weight = 1
-
max_depth = 3
-
num_round = 2
-
save_period = 0