-
Notifications
You must be signed in to change notification settings - Fork 95
Roadmap
leondgarse edited this page Oct 19, 2024
·
247 revisions
- COCO training using TF matching with Torch.
- Basic imagenet recognition training for PyTorch backend using
train_script.py
. - Other CLIP attention output headers for text model, both PyTorch and Tensorflow.
- Basic text training for both TF and Torch. Extend to other format datasets like Github karpathy/llama2.c.
- Segment-all-model AutoMaskGenerator.
- Github facebookresearch/DiT or Github milmor/diffusion-transformer-keras.
- Github tensorflow/models MobileNetV4 or Github jaiwei98/MobileNetV4-pytorch.
- Github bytedance/next-vit.
- Github PaddlePaddle/pp_hgnet.
- Github microsoft/beit3.
- YOLOV9 / YOLOV10 / YOLOV11 / Github ultralytics/ultralytics or YOLOV11 Github jahongir7174/YOLOv11-pt.
- Other PyTorch Models.
- Segment-all-model basic implementation.
- Github ChaoningZhang/MobileSAM. -
2023.11.28
-
Github CASIA-IVA-Lab/FastSAM. - Github mit-han-lab/efficientvit. -
2023.12.02
- Github xinghaochen/TinySAM. -
2023.12.27
- Github ChaoningZhang/MobileSAM. -
- Update from Github NVlabs/GCVit. -
2023.11.23
- Update from Github THU-MIG/RepViT. -
2023.11.23
- Port
LLaMA2_1B
from Github jzhang38/TinyLlama. -2023.12.16
- Port
CSPNeXt
from Github open-mmlab/mmdetection/rtmdet. -2024.01.13
- Add torch_coco_train_script.py matching with Github ultralytics/ultralytics, also supporting using self defined dataset and validator. -
2024.02.28
- Fit TF 2.16.-
2024.03.16
- Port YOLOV8 segmentation models. -
2024.04.20
-
Github AILab-CVC/GroupMixFormer. -
Github wongkinyiu/yolov9.
-
Distillation training. - CLIP training using PyTorch and Tensorflow.
- Basic CLIP training. -
2023.07.25
- PyTorch training script. -
2023.07.28
- Match Tensorflow training results with PyTroch one. -
2023.09.09
- Training scipt reformate. -
2023.09.09
- Basic CLIP training. -
- Basic text training for both TF and Torch.
- Basic text training for both Torch. -
2023.09.09
- Basic text training for both TF. -
2023.09.09
- Basic text training for both Torch. -
- Port MetaTransformer from Github invictus717/MetaTransformer. -
2023.07.28
- Port EfficientNetEdgeTPU from Github tensorflow/tpu/edgetpu. -
2023.07.29
- Port RepViT from Github THU-MIG/RepViT. -
2023.08.02
- Port LLaMA2 tiny-story weights from Github karpathy/llama2.c. -
2023.08.05
- Port FastViT from Github apple/ml-fastvit. -
2023.08.22
- Port efficientvit_b L models. -
2023.09.24
- Port Stable Diffusion v1.5 model. -
2023.09.27
- Update for DDPM training results for both TF and Torch -
2023.11.16
-
Github open-mmlab/mmpretrain/riformer. -
.grid_sample
anddeformable_conv
implementation -
Github FishAndWasabi/YOLO-MS.
- YOLOV8 COCO training using PyTorch.
- Port COCO and Imagenet models for prediction. -
2023.04.08
- Model training using PyTorch and ultralytics dataset and validator. -
2023.04.27
- Port COCO and Imagenet models for prediction. -
- Port Github JierunChen/FasterNet. -
2023.03.23
- Port Github sail-sg/inceptionnext. -
2023.04.05
- Port convnext_xxlarge from timm. -
2023.04.15
- Port DINOv2 from Github facebookresearch/dinov2. -
2023.04.26
- Port Eva02 from timm and Github baaivision/EVA. -
2023.04.28
- Port DiNAT from Github SHI-Labs/Neighborhood-Attention-Transformer/DiNAT. -
2023.05.10
- Port YOLO-NAS from Github Deci-AI/super-gradients. -
2023.05.13
- Port EfficientViT_M from Github microsoft/Cream/EfficientViT. -
2023.05.24
- Port VanillaNet from Github huawei-noah/VanillaNet. -
2023.05.26
- Port EfficientViT_B from Github mit-han-lab/efficientvit. -
2023.05.30
- Port GPT2 for further usage. -
2023.06.03
- Update T4 inference qps for most models. -
2023.06.03
- Port Hiera from Github facebookresearch/hiera. -
2023.06.11
- Port FasterViT from Github NVlabs/FasterViT. -
2023.06.19
- Port Keras MaxViT from Github google-research/maxvit. -
2022.10.20
-
CoAtNet0 224
training300
epoches82.21
->82.79
. -2022.11.12
- Port Keras GhostNetV2 from Gitee mindspore/models/ghostnetv2. -
2022.11.18
- Port Keras YOLOV7 from Github WongKinYiu/yolov7. -
2022.12.01
- Port Keras ConvNeXtV2 from Github facebookresearch/ConvNeXt-V2. -
2023.01.08
- Port Keras EfficientFormerV2 from Github snap-research/efficientformer. -
2023.01.09
- Port Keras BEiTV2 from Github microsoft/beit2. -
2023.01.10
- Port Keras EVA from Github baaivision/EVA. -
2023.01.11
- Port Keras FlexiViT from Github google-research/flexivit. -
2023.01.11
- Support
FlexiViT
changingpatch_size
. -2023.01.12
- Port Keras PVT_V2 from Github whai362/PVT. -
2023.01.12
- Add
PVT_V2B2_linear
. -2023.01.15
- Port Keras IFormer from Github sail-sg/iFormer. -
2023.01.15
- Port
GhostNet_050
/GhostNet_130
andLCNet_050
/LCNet_100
/LCNet_130
ssld weights from Github PaddlePaddle/PaddleClas. -2023.01.15
- Port Keras GPViT from Github ChenhongyiYang/GPViT. -
2023.01.15
- Port Keras CAFormer and ConvFormer from Github sail-sg/metaformer. -
2023.01.18
- Port Keras TinyViT from Github microsoft/TinyViT. -
2023.01.18
- Port Keras MogaNet from Github Westlake-AI/MogaNet. -
2023.01.18
- Token label basic training test. Including related
random_flip_left_right
/cutmix
/mixup
/random_crop_and_resize
fortoken_label
data. This is a large change indata.py
. -2022.04.30
-
Token label further improvement. - Distillation basic implementation. -
2022.05.05
-
CMTTiny
fine-tune 224. -2022.05.07
-
SwinTransformerV2Tiny_ns
training 160 -> 224. -2022.05.18
- Retrain
CoAtNet0
usingvv_dim = key_dim
.160
accuracy80.50 -> 80.48
,224
accuracy82.23 -> 82.21
, just acceptable. -2022.04.24
- Port
ConvNeXtTiny
/ConvNeXtSmall
+224
/384
+imagenet21k
weights from Github facebookresearch/ConvNeXt. -2022.04.22
- Port Keras DaViT from Github dingmyu/davit. -
2022.04.26
- Port Keras NAT from Github SHI-Labs/Neighborhood-Attention-Transformer. -
2022.05.11
- Port Keras SwinTransformerV2 new weights from Github microsoft/Swin-Transformer. -
2022.05.16
- Port
CMTTiny_torch
/CMTSmall_torch
/CMTBig_torch
from Github ggjy/CMT.pytorch. -2022.06.30
- Port Keras EdgeNeXt from Github mmaaz60/EdgeNeXt. -
2022.07.15
- Port Keras GCVit from Github NVlabs/GCVit. -
2022.07.19
- Port Keras EfficientFormer from Github snap-research/efficientformer. -
2022.07.23
- Port Keras MobileViT_V2 from Github apple/ml-cvnets. -
2022.07.25
- Port Keras HorNet from Github raoyongming/hornet. -
2022.09.12
- Modified using
anchors_mode
in[anchor_free, yolor, efficientdet]
instead of all previoususe_anchor_free_mode
anduse_yolor_anchors_mode
intraining
/evaluating
/model structure
. -2022.04.15
- YOLOR training strategy.
- Perspective and scale random_perspective. -
2022.03.25
- Anchor assign build_targets. -
2022.03.25
- BCE + Focal loss compute_loss. -
2022.03.25
- Basic train test. -
2022.04.19
- Perspective and scale random_perspective. -
- Training custom dataset. -
2022.03.29
- Port Keras WaveMLP from Github huawei-noah/wavemlp_pytorch. -
2022.03.30
- Port Keras MobileViT from Github apple/ml-cvnets/mobilevit. -
2022.04.02
- Port from
timm
:regnety_040
/regnety_064
/regnety_080
/regnetz_c16_evos
/regnetz_d8_evos
. -2022.04.05
- Port Keras SwinTransformerV2 from timm swin_transformer_v2_cr. -
2022.04.06
- Fix YOLOX COCO evaluation. -
2022.03.28
- Fix YOLOR COCO evaluation. -
2022.04.11
- Port from timm: mobilenetv3 / fbnetv3 / lcnet / tinynet.
LCNet150 / LCNet200 / LCNet250
from Github PaddlePaddle/PaddleClas -2022.04.13
- Port from
timm
:ResNeXt101W_64
/EfficientNetV2T_GC
. -2022.04.20
-
aotnet50 + evonorm + A3
training test. Accuracy improved from basic78.47
->78.66
on224
. -2022.04.18
- YOLOX training strategy.
- Share / rotate / translate bboxes. -
2022.02.23
- Mosaic augment. -
2022.02.24
- Anchor free mode, dynamically assign foreground / background. -
2022.03.02
- l1_target_loss / loss_iou / loss_obj / loss_cls. -
2022.03.07
- Basic train test. -
2022.03.13
- Share / rotate / translate bboxes. -
- Fine-tune
CoAtNet A3 160
to 224 using magnitude 15. Accuracy improved from82.06
->82.23
. -2022.03.08
- Port Keras UniFormer from Github Sense-X/UniFormer. -
2022.03.11
- Keras CMT training, 305 epochs. -
2022.03.21
- YOLOR model architecture and converted weights,
CSP
/CSPX
. -2022.03.16
- YOLOR anchors and prediction. -
2022.03.18
- Port YOLOR weights
P6
/W6
/E6
/D6
. -2022.03.19
-
Port.efficientdet
weights from automl efficientdet/Det-AdvProp -
Port.efficientnetv2_ds
weights from rwightman/efficientdet-pytorch
- Update BEIT
MultiHeadRelativePositionalEmbedding
w/o transpose. Be caution of this update if wanna reload earlier own pre-trainedBEIT
/CoAtNet
models. - Re-format model weights names with multiple input resolutions.
- COCO AP / AR evaluation.
- Upload EfficientDetLite models.
- CoAtNet A3 160 + weight_decay excluding positional_embedding. Accuracy improved from
80.19
->80.50
. - Fine-tune
CoAtNet A3 160
to 224 using magnitude 10 + weight_decay excluding positional_embedding. Accuracy improved from81.99
->82.06
. - Upload YOLOX model architecture and converted weights.
- YOLOX prediction.
- Upload
EfficientDet
. - COCO dataset load and
FocalLossWithBbox
. - set
anti_alias
as defaultTrue
for train and test. imagenet#comparing-resize-methods-bicubic-or-bilinear. - Keras CoAtNet training, CoAtNet0 224.
- Imagenet training readme document.
- Trying COCO training...
- Port recent timm halonets and botnets.
- eca_halonext26ts
- sebotnet33ts_256
- halonet50ts
- halo2botnet50ts_256
- regnetz_d8
- regnetz_e8
-
vit_base_patch8_224
- Clean code for imagenet training.
- Merge Github leondgarse/keras_efficientnet_v2.
- Reproduce ResNet Strikes Back
A2
result. - Upload Keras CoAtNet0
160
A3
result. - Better support for
TFLite
. Addmodel_surgery
functions forTFLite
conversion, includinggelu
/extract_pathes
/group Conv2D
. -
Keras CMT training. - Some compare on Keras CoAtNet architecture.
- CoATNet0 A3 with
drop_connect_rate=0.2
and0.05
. -
reload_model_weights_with_mismatch
forHaloNet
. - Progressive training test on cifar10.
- Progressive training test on imagenet, input
[96, 128, 160]
, A3. - Learning rate cosine decay with restart training test on imagenet,
--lr_decay_steps 33
.
- Keras HaloNet
HaloNet50
weights reload from timm releases/tag/v0.1-attn-weights. - Port beit from microsoft/beit.
- Port RegNetZ from timm.
- Update
HaloNet
/BotNet
/CotNet
/ResNest
usingAotNet
, liketimm
usingbyobnet
/byoanet
. - Port
BotNextECA26T
/HaloNextECA26T
/RegNetZ
/HaloRegNetZB
from timm. - Update imagenet training data augment
Randaug
/RRC
/cutmix
/RandomErasing
and others according to timm. - Reproduce ResNet Strikes Back
A3
result. -
Port model from ResNet Strikes Back released in timm releases/tag/v0.1-rsb-weights and others. - Port
RegNet
from timm/models/regnet.py.
- Github microsoft/CvT.
- Github microsoft/CSWin-Transformer.
- Github ShoufaChen/CycleMLP.
- Github pengzhiliang/Conformer.
- Github LeapLabTHU/DAT.
- Github facebookresearch/cait_models.
- Github UKPLab/sentence-transformers.
- Github Annbless/ViTAE.
- Github ylingfeng/DynamicMLP.
- Github microsoft/DynamicHead.
- Github IDEACVR/DINO.
- Github hustvl/TopFormer.
- Github dqshuai/metaformer.
- Github PaddleClas/mixformer.
- Github idstcv/ZenNAS.
- Github huawei-noah/Efficient-AI-Backbones/vig_pytorch.
- Github yolov6/models.
- Github OpenGVLab/InternImage.
- Github HVision-NKU/Conv2Former.
- Github zhangzjn/EMO.
- Github stevenlauhkhk/large-separable-kernel-attention
- Github qhfan/RMT.
- Github badripatro/svt.
- Github tany0699/FMViT.
- Github DaiShiResearch/TransNeXt.
- 2307.06304 Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution.
- 2401.03540 SeTformer is What You Need for Vision and Language