Skip to content

Roadmap

leondgarse edited this page Oct 19, 2024 · 247 revisions

Currently under working

2024.04.20 under working

2023.11.20 under working

  • Distillation training.
  • CLIP training using PyTorch and Tensorflow.
    • Basic CLIP training. - 2023.07.25
    • PyTorch training script. - 2023.07.28
    • Match Tensorflow training results with PyTroch one. - 2023.09.09
    • Training scipt reformate. - 2023.09.09
  • Basic text training for both TF and Torch.
    • Basic text training for both Torch. - 2023.09.09
    • Basic text training for both TF. - 2023.09.09
  • Port MetaTransformer from Github invictus717/MetaTransformer. - 2023.07.28
  • Port EfficientNetEdgeTPU from Github tensorflow/tpu/edgetpu. - 2023.07.29
  • Port RepViT from Github THU-MIG/RepViT. - 2023.08.02
  • Port LLaMA2 tiny-story weights from Github karpathy/llama2.c. - 2023.08.05
  • Port FastViT from Github apple/ml-fastvit. - 2023.08.22
  • Port efficientvit_b L models. - 2023.09.24
  • Port Stable Diffusion v1.5 model. - 2023.09.27
  • Update for DDPM training results for both TF and Torch - 2023.11.16
  • Github open-mmlab/mmpretrain/riformer.
  • grid_sample and deformable_conv implementation.
  • Github FishAndWasabi/YOLO-MS.

2023.07.20 under working

2023.01.20 under working

2022.09.20 under working

2022.04.20 under working

2022.03.20 under working

  • YOLOX training strategy.
    • Share / rotate / translate bboxes. - 2022.02.23
    • Mosaic augment. - 2022.02.24
    • Anchor free mode, dynamically assign foreground / background. - 2022.03.02
    • l1_target_loss / loss_iou / loss_obj / loss_cls. - 2022.03.07
    • Basic train test. - 2022.03.13
  • Fine-tune CoAtNet A3 160 to 224 using magnitude 15. Accuracy improved from 82.06 -> 82.23. - 2022.03.08
  • Port Keras UniFormer from Github Sense-X/UniFormer. - 2022.03.11
  • Keras CMT training, 305 epochs. - 2022.03.21
  • YOLOR model architecture and converted weights, CSP / CSPX. - 2022.03.16
  • YOLOR anchors and prediction. - 2022.03.18
  • Port YOLOR weights P6 / W6 / E6 / D6. - 2022.03.19
  • Port efficientdet weights from automl efficientdet/Det-AdvProp.
  • Port efficientnetv2_ds weights from rwightman/efficientdet-pytorch.

2022.02.20 under working.

  • Update BEIT MultiHeadRelativePositionalEmbedding w/o transpose. Be caution of this update if wanna reload earlier own pre-trained BEIT / CoAtNet models.
  • Re-format model weights names with multiple input resolutions.
  • COCO AP / AR evaluation.
  • Upload EfficientDetLite models.
  • CoAtNet A3 160 + weight_decay excluding positional_embedding. Accuracy improved from 80.19 -> 80.50.
  • Fine-tune CoAtNet A3 160 to 224 using magnitude 10 + weight_decay excluding positional_embedding. Accuracy improved from 81.99 -> 82.06.
  • Upload YOLOX model architecture and converted weights.
  • YOLOX prediction.

2022.01.20 under working

2021.12.20 under working

  • Port recent timm halonets and botnets.
    • eca_halonext26ts
    • sebotnet33ts_256
    • halonet50ts
    • halo2botnet50ts_256
    • regnetz_d8
    • regnetz_e8
    • vit_base_patch8_224
  • Clean code for imagenet training.
  • Merge Github leondgarse/keras_efficientnet_v2.
  • Reproduce ResNet Strikes Back A2 result.
  • Upload Keras CoAtNet0 160 A3 result.
  • Better support for TFLite. Add model_surgery functions for TFLite conversion, including gelu / extract_pathes / group Conv2D.
  • Keras CMT training.
  • Some compare on Keras CoAtNet architecture.
  • CoATNet0 A3 with drop_connect_rate=0.2 and 0.05.
  • reload_model_weights_with_mismatch for HaloNet.
  • Progressive training test on cifar10.
  • Progressive training test on imagenet, input [96, 128, 160], A3.
  • Learning rate cosine decay with restart training test on imagenet, --lr_decay_steps 33.

2021.10.20 under working

Other PyTorch models