Releases: learnables/learn2learn
Releases · learnables/learn2learn
MetaModules, TasksetSampler, Adapters & LoRA, more examples and tutorials + removed dependency.
MetaModules, TasksetSampler, Adapters & LoRA, more examples and tutorials
Added
- New vision example: MAML++. (@Theo Morales)
- Add tutorial: "Demystifying Task Transforms", (Varad Pimpalkhute)
- Add
l2l.nn.MetaModule
andl2l.nn.ParameterTransform
for parameter-efficient finetuning. - Add
l2l.nn.freeze
andl2l.nn.unfreeze
. - Add Adapters and LoRA examples.
- Add TasksetSampler, compatible with PyTorch's Dataloaders.
Changed
- Documentation: uses
mkdocstrings
instead ofpydoc-markdown
. - Remove
text/news_topic_classification.py
example. - Rename TaskDataset to Taskset.
Fixed
- MAML Toy example. (@Theo Morales)
- Example for
detach_module
. (Nimish Sanghi) - Loading duplicate FGVC Aircraft images.
- Move vision datasets to Zenodo. (mini-ImageNet, tiered-ImageNet, FC100, CIFAR-FS, CUB200)
- mini-ImageNet targets are now ints (not np.float64).
- Swap family for variants in FGVCAircraft, as in MetaDataset.
Aircraft, CUB200 bounding boxes, pretrained_backbones, RandomClassRotation, fixed memory_leak.
v0.1.7
Added
- Bounding box cropping for Aircraft and CUB200.
- Pretrained weights for vision models with:
l2l.vision.models.get_pretrained_backbone()
. - Add
keep_requires_grad
flag todetach_module
. (Zhaofeng Wu)
Fixed
- Fix arguments when instantiating
l2l.nn.Scale
. - Fix
train_loss
logging inLightningModule
implementations with PyTorch-Lightning 1.5. - Fix
RandomClassRotation
(#283) to incorporate multi-channelled inputs. (Varad Pimpalkhute) - Fix memory leak in
maml.py
andmeta-sgd.py
and add tests tomaml_test.py
andmetasgd_test.py
to check for possible future memory leaks. (#284) (Kevin Zhang)
Add Lightning interface, Backbone classes, new classifiers, and data utils.
v0.1.6
Added
- PyTorch Lightning interface to MAML, ANIL, ProtoNet, MetaOptNet.
- Automatic batcher for Lightning:
l2l.data.EpisodicBatcher
. l2l.nn.PrototypicalClassifier
andl2l.nn.SVMClassifier
.- Add
l2l.vision.models.WRN28
. - Separate modules for
CNN4Backbone
,ResNet12Backbone
,WRN28Backbones
w/ pretrained weights. - Add
l2l.data.OnDeviceDataset
and implementdevice
parameter for benchmarks. - (Beta) Add
l2l.data.partition_task
andl2l.data.InfiniteIterator
.
Changed
- Renamed and clarify dropout parameters for
ResNet12
.
Fixed
- Improved support for 1D inputs in
l2l.nn.KroneckerLinear
. (@timweiland)
Fix windows installation.
v0.1.5
Fixed
- Fix setup.py for windows installs.
Add new datasets, new models, and dataset utilities.
v0.1.4
Added
FilteredMetaDatasest
filter the classes used to sample tasks.UnionMetaDatasest
to get the union of multiple MetaDatasets.- Alias
MiniImageNetCNN
toCNN4
and addembedding_size
argument. - Optional data augmentation schemes for vision benchmarks.
l2l.vision.models.ResNet12
l2l.vision.datasets.DescribableTextures
l2l.vision.datasets.Quickdraw
l2l.vision.datasets.FGVCFungi
- Add
labels_to_indices
andindices_to_labels
as optional arguments tol2l.data.MetaDataset
.
Changed
- Updated reference for citations.
Add CUBirds200, new vision model interface, fix clone_module for shared parameters
Added
l2l.vision.datasets.CUBirds200
.
Changed
- Optimization transforms can be accessed directly through
l2l.optim
, e.g.l2l.optim.KroneckerTransform
. - All vision models adhere to the
.features
and.classifier
interface.
Fixed
- Fix
clone_module
for Modules whose submodules share parameters.
Add Meta-World, l2l.optim, l2l.vision.benchmarks.
Added
- New example: Meta-World example with MAML-TRPO with it's own env wrapper. (@Kostis-S-Z)
l2l.vision.benchmarks
interface.- Differentiable optimization utilities in
l2l.optim
. (includingl2l.optim.LearnableOptimizer
for meta-descent) - General gradient-based meta-learning wrapper in
l2l.algorithms.GBML
. - Various
nn.Modules
inl2l.nn
. l2l.update_module
as a more general alternative tol2l.algorithms.maml_update
.
Fixed
- clone_module supports non-Module objects.
- VGG flowers now relies on tarfile.open() instead of tarfile.TarFile().
Fix clone_module and MAML for RNN modules
v0.1.1 ====== Added ----- * New tutorial: 'Feature Reuse with ANIL'. (@ewinapun) Changed ------- * Mujoco imports optional for docs: the import error is postponed to first method call. Fixed ----- * `MAML()` and `clone_module` support for RNN modules.
Clean up package for PyPI distribution
v0.1.0.1 ======== Fixed ----- * Remove Cython dependency when installing from PyPI and clean up package distribution.