Ever since Yahoo! finance decommissioned their historical data API, many programs that relied on it to stop working.
yfinanceng aimes to solve this problem by offering a reliable, threaded, and Pythonic way to download historical market data from Yahoo! finance.
The library was originally named yfinance
, but
I've since renamed it to yfinanceng
as I no longer consider it a mere "fix", and the author is
not promptly maintaining it or merging PRs.
The Ticker
module, which allows you to access
ticker data in amore Pythonic way:
import yfinanceng as yf
msft = yf.Ticker("MSFT")
# get stock info
msft.info
# get historical market data
hist = msft.history(period="max")
# show actions (dividends, splits)
msft.actions
# show dividends
msft.dividends
# show splits
msft.splits
# show financials
msft.financials
msft.quarterly_financials
# show major holders
msft.major_holders
# show institutional holders
msft.institutional_holders
# show balance heet
msft.balance_sheet
msft.quarterly_balance_sheet
# show cashflow
msft.cashflow
msft.quarterly_cashflow
# show earnings
msft.earnings
msft.quarterly_earnings
# show sustainability
msft.sustainability
# show analysts recommendations
msft.recommendations
# show next event (earnings, etc)
msft.calendar
# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin
# show options expirations
msft.options
# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts
If you want to use a proxy server for downloading data, use:
import yfinanceng as yf
msft = yf.Ticker("MSFT")
msft.history(..., proxy="PROXY_SERVER")
msft.get_actions(proxy="PROXY_SERVER")
msft.get_dividends(proxy="PROXY_SERVER")
msft.get_splits(proxy="PROXY_SERVER")
msft.get_balance_sheet(proxy="PROXY_SERVER")
msft.get_cashflow(proxy="PROXY_SERVER")
msgt.option_chain(..., proxy="PROXY_SERVER")
...
To initialize multiple Ticker
objects, use
import yfinanceng as yf
tickers = yf.Tickers('msft aapl goog')
# ^ returns a named tuple of Ticker objects
# access each ticker using (example)
tickers.msft.info
tickers.aapl.history(period="1mo")
tickers.goog.actions
import yfinanceng as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")
I've also added some options to make life easier :)
data = yf.download( # or pdr.get_data_yahoo(...
# tickers list or string as well
tickers = "SPY AAPL MSFT",
# use "period" instead of start/end
# valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
# (optional, default is '1mo')
period = "ytd",
# fetch data by interval (including intraday if period < 60 days)
# valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
# (optional, default is '1d')
interval = "1m",
# group by ticker (to access via data['SPY'])
# (optional, default is 'column')
group_by = 'ticker',
# adjust all OHLC automatically
# (optional, default is False)
auto_adjust = True,
# download pre/post regular market hours data
# (optional, default is False)
prepost = True,
# use threads for mass downloading? (True/False/Integer)
# (optional, default is True)
threads = True,
# proxy URL scheme use use when downloading?
# (optional, default is None)
proxy = None
)
If your code uses pandas_datareader
and you want to download data faster,
you can "hijack" pandas_datareader.data.get_data_yahoo()
method to use
yfinanceng while making sure the returned data is in the same format as
pandas_datareader's get_data_yahoo()
.
from pandas_datareader import data as pdr
import yfinanceng as yf
yf.pdr_override() # <== that's all it takes :-)
# download dataframe
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")
Install yfinanceng
using pip
:
$ pip install yfinanceng --upgrade --no-cache-dir
Install yfinanceng
using conda
:
$ conda install -c larroy yfinanceng
- pandas_datareader >= 0.4.0
yfinanceng is distributed under the Apache Software License. See the LICENSE.txt file in the release for details.
Based on yfinance from Ran Aroussi.