Skip to content

Commit

Permalink
Numpy add numpy op roll (apache#15902)
Browse files Browse the repository at this point in the history
* add numpy op roll

updata roll

address comments

fix backward and docs

* fix docs and test fils
  • Loading branch information
gyshi authored and larroy committed Sep 28, 2019
1 parent 9f930f7 commit aa3be50
Show file tree
Hide file tree
Showing 5 changed files with 365 additions and 4 deletions.
67 changes: 67 additions & 0 deletions python/mxnet/_numpy_op_doc.py
Original file line number Diff line number Diff line change
Expand Up @@ -516,3 +516,70 @@ def _np__linalg_svd(a):
array(0.)
"""
pass


def _np_roll(a, shift, axis=None):
"""
roll(a, shift, axis=None):
Roll array elements along a given axis.
Elements that roll beyond the last position are re-introduced at
the first.
Parameters
----------
a : ndarray
Input array.
shift : int or tuple of ints
The number of places by which elements are shifted. If a tuple,
then `axis` must be a tuple of the same size, and each of the
given axes is shifted by the corresponding number. If an int
while `axis` is a tuple of ints, then the same value is used for
all given axes.
axis : int or tuple of ints, optional
Axis or axes along which elements are shifted. By default, the
array is flattened before shifting, after which the original
shape is restored.
Returns
-------
res : ndarray
Output array, with the same shape as `a`.
Notes
-----
Supports rolling over multiple dimensions simultaneously.
Examples
--------
>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8., 9., 0., 1., 2., 3., 4., 5., 6., 7.])
>>> np.roll(x, -2)
array([2., 3., 4., 5., 6., 7., 8., 9., 0., 1.])
>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0., 1., 2., 3., 4.],
[5., 6., 7., 8., 9.]])
>>> np.roll(x2, 1)
array([[9., 0., 1., 2., 3.],
[4., 5., 6., 7., 8.]])
>>> np.roll(x2, -1)
array([[1., 2., 3., 4., 5.],
[6., 7., 8., 9., 0.]])
>>> np.roll(x2, 1, axis=0)
array([[5., 6., 7., 8., 9.],
[0., 1., 2., 3., 4.]])
>>> np.roll(x2, -1, axis=0)
array([[5., 6., 7., 8., 9.],
[0., 1., 2., 3., 4.]])
>>> np.roll(x2, 1, axis=1)
array([[4., 0., 1., 2., 3.],
[9., 5., 6., 7., 8.]])
>>> np.roll(x2, -1, axis=1)
array([[1., 2., 3., 4., 0.],
[6., 7., 8., 9., 5.]])
"""
pass
157 changes: 157 additions & 0 deletions src/operator/numpy/np_matrix_op-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
#define MXNET_OPERATOR_NUMPY_NP_MATRIX_OP_INL_H_

#include <vector>
#include <algorithm>
#include "../tensor/matrix_op-inl.h"
#include "../nn/concat-inl.h"

Expand Down Expand Up @@ -140,6 +141,162 @@ void NumpyVstackBackward(const nnvm::NodeAttrs& attrs,
});
}

struct NumpyRollParam : public dmlc::Parameter<NumpyRollParam> {
dmlc::optional<mxnet::TShape> shift;
dmlc::optional<mxnet::TShape> axis;
DMLC_DECLARE_PARAMETER(NumpyRollParam) {
DMLC_DECLARE_FIELD(shift)
.set_default(dmlc::optional<mxnet::TShape>())
.describe("The number of places by which elements are shifted. If a tuple,"
"then axis must be a tuple of the same size, and each of the given axes is shifted"
"by the corresponding number. If an int while axis is a tuple of ints, "
"then the same value is used for all given axes.");
DMLC_DECLARE_FIELD(axis)
.set_default(dmlc::optional<mxnet::TShape>())
.describe("Axis or axes along which elements are shifted. By default, the array is flattened"
"before shifting, after which the original shape is restored.");
}
};

template<int req>
struct RollAxisNone_forward {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, DType* out_data, const DType* in_data,
const int size, const int shift) {
int new_index = i - shift < 0 ? i - shift + size : i - shift;
KERNEL_ASSIGN(out_data[i], req, in_data[new_index]);
}
};

template<int req>
struct RollAxis_forward {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, DType* out_data, const DType* in_data,
const size_t* new_index) {
KERNEL_ASSIGN(out_data[i], req, in_data[new_index[i]]);
}
};

inline void RollDfs(const std::vector<std::vector<size_t>>& new_axes,
const std::vector<size_t>& value,
std::vector<size_t>* new_index,
int index, int ndim, int mid) {
for (int a : new_axes[index]) {
if (index == ndim - 1) {
std::vector<size_t>& out = (*new_index);
out.push_back(mid + a);
} else {
mid += a * value[ndim - 1 - index];
RollDfs(new_axes, value, new_index, index + 1, ndim, mid);
mid -= a * value[ndim - 1 - index];
}
}
}

template<typename xpu>
void NumpyRollCompute(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
CHECK_EQ(req.size(), 1U);
if (inputs[0].Size() == 0U) return;
const NumpyRollParam& param = nnvm::get<NumpyRollParam>(attrs.parsed);
const index_t ndim(inputs[0].shape_.ndim());
Stream<xpu> *s = ctx.get_stream<xpu>();
std::vector<int> shifts(ndim, 0);
index_t input_size = inputs[0].Size();
if (!param.axis.has_value()) {
int shift = param.shift.value()[0];
shift = shift % input_size;
if (shift < 0) {
shift += inputs[0].shape_.Size();
}
MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<RollAxisNone_forward<req_type>, xpu>::Launch(
s, outputs[0].Size(), outputs[0].dptr<DType>(), inputs[0].dptr<DType>(),
inputs[0].Size(), shift);
});
});
} else {
mxnet::TShape axes(param.axis.value());
for (int i = 0; i < axes.ndim(); ++i) {
if (axes[i] < 0) {
axes[i] += ndim;
}
}
for (int i = 0; i < axes.ndim(); ++i) {
CHECK_LT(axes[i], ndim)
<< "axis " << axes[i]
<< " Exceeds input dimensions " << inputs[0].shape_;
CHECK_GE(axes[0], 0)
<< "Reduction axis " << param.axis.value()
<< " Exceeds input dimensions " << inputs[0].shape_;
}
if (param.shift.value().ndim() == 1) {
for (int i = 0; i < axes.ndim(); ++i) {
shifts[axes[i]] = param.shift.value()[0];
}
} else {
if (param.shift.value().ndim() != axes.ndim()) {
LOG(FATAL) << "shift and `axis` must be a tuple of the same size,";
}
for (int i = 0; i < axes.ndim(); ++i) {
shifts[axes[i]] = param.shift.value()[i];
}
}
// keep shift in a legal range
for (int i = 0; i < ndim; ++i) {
int trans_shift = shifts[i] % inputs[0].shape_[i];
if (trans_shift < 0) {
trans_shift = shifts[i] + inputs[0].shape_[i];
}
shifts[i] = trans_shift;
}
// the result of new axis after shift.
std::vector<std::vector<size_t>> new_axes;
std::vector<size_t> new_index;
std::vector<size_t> temp;
std::vector<size_t> value(ndim, 0);
int mid_val = 1;
for (int i = 0; i < ndim; ++i) {
if (shifts[i] != 0) {
for (int j = 0; j < inputs[0].shape_[i]; ++j) {
int new_axis = (j + inputs[0].shape_[i] - shifts[i]) % inputs[0].shape_[i];
temp.push_back(new_axis);
}
} else {
for (int j = 0; j < inputs[0].shape_[i]; ++j) {
temp.push_back(j);
}
}
new_axes.push_back(temp);
temp.clear();
value[i] = mid_val;
mid_val *= inputs[0].shape_[ndim - 1 - i];
}
RollDfs(new_axes, value, &new_index, 0, ndim, 0);
size_t workspace_size = new_index.size() * sizeof(size_t);
Tensor<xpu, 1, char> workspace =
ctx.requested[0].get_space_typed<xpu, 1, char>(Shape1(workspace_size), s);
Tensor<cpu, 1, size_t> index_cpu_tensor(new_index.data(), Shape1(new_index.size()));
Tensor<xpu, 1, size_t> index_xpu_tensor(
reinterpret_cast<size_t*>(workspace.dptr_), Shape1(new_index.size()));
mshadow::Copy(index_xpu_tensor, index_cpu_tensor, s);
MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<RollAxis_forward<req_type>, xpu>::Launch(
s, outputs[0].Size(), outputs[0].dptr<DType>(), inputs[0].dptr<DType>(),
index_xpu_tensor.dptr_);
});
});
}
}

} // namespace op
} // namespace mxnet

Expand Down
76 changes: 76 additions & 0 deletions src/operator/numpy/np_matrix_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(NumpyTransposeParam);
DMLC_REGISTER_PARAMETER(NumpyRollParam);

bool NumpyTransposeShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector *in_attrs,
Expand Down Expand Up @@ -489,5 +490,80 @@ NNVM_REGISTER_OP(_backward_np_vstack)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", NumpyVstackBackward<cpu>);

inline bool NumpyRollShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector *in_attrs,
mxnet::ShapeVector *out_attrs) {
using namespace mshadow;
const NumpyRollParam& param = nnvm::get<NumpyRollParam>(attrs.parsed);

if (!param.shift.has_value()) {
LOG(FATAL) << "roll missing 1 required positional argument: 'shift'.";
}
if (param.shift.value().ndim() > 1 &&
param.axis.has_value() &&
param.axis.value().ndim() != param.shift.value().ndim()) {
LOG(FATAL) << "shift and `axis` must be a tuple of the same size.";
}
if (!param.axis.has_value() && param.shift.has_value() && param.shift.value().ndim() > 1) {
LOG(FATAL) << "shift must be an int.";
}
if (param.axis.has_value()) {
mxnet::TShape axes(param.axis.value());
const index_t ndim = (*in_attrs)[0].ndim();
for (index_t i = 0; i < axes.ndim(); i++) {
if (axes[i] < 0) {
axes[i] += ndim;
}
}
std::sort(axes.begin(), axes.end());
for (index_t i = 1; i < axes.ndim(); i++) {
CHECK_LT(axes[i - 1], axes[i])
<< "axes have duplicates " << axes;
}
CHECK_LT(axes[axes.ndim() - 1], ndim)
<< "axis " << axes[axes.ndim() - 1]
<< " Exceeds input dimensions " << (*in_attrs)[0];
CHECK_GE(axes[0], 0)
<< "Reduction axis " << param.axis.value()
<< " Exceeds input dimensions " << (*in_attrs)[0];
}
return ElemwiseShape<1, 1>(attrs, in_attrs, out_attrs);
}

NNVM_REGISTER_OP(_np_roll)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<NumpyRollParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", NumpyRollShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<mxnet::FCompute>("FCompute<cpu>", NumpyRollCompute<cpu>)
.set_attr<nnvm::FGradient>("FGradient",
[](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
const NumpyRollParam& param = nnvm::get<NumpyRollParam>(n->attrs.parsed);
if (!param.shift.has_value()) {
LOG(FATAL) << "roll missing 1 required positional argument: 'shift'.";
}
mxnet::TShape shifts(param.shift.value());
for (int i = 0; i < shifts.ndim(); ++i) {
shifts[i] = -shifts[i];
}
std::ostringstream os1;
os1 << dmlc::optional<mxnet::TShape>(shifts);
std::ostringstream os2;
os2 << param.axis;
return MakeNonlossGradNode("_np_roll", n, ograds, {},
{{"shift", os1.str()}, {"axis", os2.str()}});
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.add_argument("data", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(NumpyRollParam::__FIELDS__());

} // namespace op
} // namespace mxnet
3 changes: 3 additions & 0 deletions src/operator/numpy/np_matrix_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -53,5 +53,8 @@ NNVM_REGISTER_OP(_npi_vstack)
NNVM_REGISTER_OP(_backward_np_vstack)
.set_attr<FCompute>("FCompute<gpu>", NumpyVstackBackward<gpu>);

NNVM_REGISTER_OP(_np_roll)
.set_attr<FCompute>("FCompute<gpu>", NumpyRollCompute<gpu>);

} // namespace op
} // namespace mxnet
Loading

0 comments on commit aa3be50

Please sign in to comment.