-
Notifications
You must be signed in to change notification settings - Fork 7
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Execution time #254
Comments
My first guess is that at many places we need information stored in the model.frame or the model.matrix. While the modle.frame is usually stored within the model results, this is not the case of the model.matrix. Therefore, it may be relevant to copy and attach the model.matrix (at least temporally) between the different steps. Needs to be tested. |
I've never used it personally, but perhaps the memoise pkg could be useful. It caches results and only performs the calculation the first time, and each subsequent call grabs the results from cache |
in `tidy_and_attach()` and `tidy_plus_plus()` to attach model frame and model matrix to the model as attributes for saving some execution time fix #254
Please have a look at #255 implemented some caching of model frame and model matrix to the model object. The argument @ddsjoberg I didn't use See below a quick benchmark before and after. @lucasxteixeira using this new version and avoiding to compute the number of observations per modality (i.e. library(broom.helpers)
set.seed(42)
size <- 5000000
df <- data.frame(
y = rnorm(size),
x1 = rnorm(size),
x2 = sample(c(TRUE, FALSE), size, replace = TRUE),
x3 = factor(sample(c("A", "B", "C"), size, replace = TRUE))
)
m <- lm(y ~ x1 + x2 + x3, data = df)
# without caching model matrix
s0 <- m |>
tidy_and_attach(model_matrix_attr = FALSE)
s1 <- s0 |>
tidy_identify_variables()
s2 <- s1 |>
tidy_add_contrasts()
s3 <- s2 |>
tidy_add_reference_rows()
s4 <- s3 |>
tidy_add_estimate_to_reference_rows()
s5 <- s4 |>
tidy_add_term_labels()
s6 <- s5 |>
tidy_add_header_rows()
s7 <- s6 |>
tidy_add_n()
b <- microbenchmark::microbenchmark(
m |> tidy_and_attach(),
s0 |> tidy_identify_variables(),
s1 |> tidy_add_contrasts(),
s2 |> tidy_add_reference_rows(),
s3 |> tidy_add_estimate_to_reference_rows(),
s4 |> tidy_add_term_labels(),
s5 |> tidy_add_header_rows(),
s6 |> tidy_add_n(),
times = 5
)
b
#> Unit: milliseconds
#> expr min lq mean
#> tidy_and_attach(m) 1308.1122 1342.4657 1511.52028
#> tidy_identify_variables(s0) 891.9426 892.2176 1013.81794
#> tidy_add_contrasts(s1) 906.9803 950.8952 1199.12334
#> tidy_add_reference_rows(s2) 1740.8123 1914.9015 2304.18500
#> tidy_add_estimate_to_reference_rows(s3) 2.4704 2.5295 2.83704
#> tidy_add_term_labels(s4) 1770.3298 1904.9071 2170.40976
#> tidy_add_header_rows(s5) 18.3213 21.1508 21.79842
#> tidy_add_n(s6) 4908.2289 5417.0192 5593.61400
#> median uq max neval
#> 1369.7221 1452.1779 2085.1235 5
#> 1003.9495 1091.5755 1189.4045 5
#> 1124.5302 1486.5224 1526.6886 5
#> 2298.6875 2490.7164 3075.8073 5
#> 2.9398 3.0409 3.2046 5
#> 2081.1680 2132.5292 2963.1147 5
#> 21.2039 21.7075 26.6086 5
#> 5766.6404 5923.1059 5953.0756 5
# with caching model matrix
s0 <- m |>
tidy_and_attach()
s1 <- s0 |>
tidy_identify_variables()
s2 <- s1 |>
tidy_add_contrasts()
s3 <- s2 |>
tidy_add_reference_rows()
s4 <- s3 |>
tidy_add_estimate_to_reference_rows()
s5 <- s4 |>
tidy_add_term_labels()
s6 <- s5 |>
tidy_add_header_rows()
s7 <- s6 |>
tidy_add_n()
b <- microbenchmark::microbenchmark(
m |> tidy_and_attach(),
s0 |> tidy_identify_variables(),
s1 |> tidy_add_contrasts(),
s2 |> tidy_add_reference_rows(),
s3 |> tidy_add_estimate_to_reference_rows(),
s4 |> tidy_add_term_labels(),
s5 |> tidy_add_header_rows(),
s6 |> tidy_add_n(),
times = 5
)
b
#> Unit: milliseconds
#> expr min lq mean
#> tidy_and_attach(m) 1183.0690 1260.9537 1618.52904
#> tidy_identify_variables(s0) 28.6777 28.7928 37.62974
#> tidy_add_contrasts(s1) 35.9631 36.2232 51.41974
#> tidy_add_reference_rows(s2) 202.8618 216.1722 247.23770
#> tidy_add_estimate_to_reference_rows(s3) 2.0402 2.0497 2.89266
#> tidy_add_term_labels(s4) 115.9453 133.5421 144.57326
#> tidy_add_header_rows(s5) 17.4916 21.6246 24.74484
#> tidy_add_n(s6) 1734.7273 2098.8633 2124.85670
#> median uq max neval
#> 1736.3493 1894.6854 2017.5878 5
#> 35.5844 47.5241 47.5697 5
#> 44.9223 64.5268 75.4633 5
#> 226.8496 294.4951 295.8098 5
#> 2.5728 3.2854 4.5152 5
#> 138.2370 139.0601 196.0818 5
#> 26.8611 28.5671 29.1798 5
#> 2193.1916 2199.2863 2398.2150 5
# overall gain
microbenchmark::microbenchmark(
tidy_plus_plus(m, model_matrix_attr = FALSE),
tidy_plus_plus(m),
tidy_plus_plus(m, add_n = FALSE),
tidy_plus_plus(m, add_n = FALSE, model_matrix_attr = FALSE),
times = 5
)
#> Unit: seconds
#> expr min
#> tidy_plus_plus(m, model_matrix_attr = FALSE) 11.806868
#> tidy_plus_plus(m) 5.100999
#> tidy_plus_plus(m, add_n = FALSE) 2.494101
#> tidy_plus_plus(m, add_n = FALSE, model_matrix_attr = FALSE) 6.815652
#> lq mean median uq max neval
#> 12.237099 12.544947 12.771944 12.951536 12.957286 5
#> 5.302496 7.109005 5.343877 5.869818 13.927835 5
#> 2.565271 2.959569 2.737820 2.961719 4.038936 5
#> 7.302845 12.897389 13.297690 18.419446 18.651313 5 Created on 2024-07-01 with reprex v2.1.0 |
Thank you! It was a very fast solution. |
Hi,
I have been experiencing issues with execution time when using the
tidy_plus_plus
package. After investigating, I found that some steps significantly increase execution time as the size of the data input grows. While I expected this foradd_n
, I did not anticipate it for other steps.For example, a simple linear model with 1 million data points takes approximately 0.8 seconds with the regular
tidy
, whereastidy_plus_plus
(withoutadd_n
) takes around 3 seconds. Although this difference might not seem substantial, my real use case involves a survival model with 14 million data points, making the increased execution time impractical.The steps that notably increase execution time in my testing are:
tidy_identify_variables
tidy_add_reference_rows
tidy_add_variable_labels
tidy_add_term_labels
Reproducible Example:
The text was updated successfully, but these errors were encountered: