Skip to content

Fix/multi thread parameter #1604

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions api/core/tool/dataset_multi_retriever_tool.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,7 @@ def _retriever(self, flask_app: Flask, dataset_id: str, query: str, all_document
'search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'top_k': self.top_k,
'score_threshold': self.score_threshold,
Expand All @@ -210,7 +210,7 @@ def _retriever(self, flask_app: Flask, dataset_id: str, query: str, all_document
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search,
kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'search_method': 'hybrid_search',
'embeddings': embeddings,
Expand Down
4 changes: 2 additions & 2 deletions api/core/tool/dataset_retriever_tool.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ def _run(self, query: str) -> str:
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'top_k': self.top_k,
'score_threshold': retrieval_model['score_threshold'] if retrieval_model[
Expand All @@ -124,7 +124,7 @@ def _run(self, query: str) -> str:
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings,
Expand Down
4 changes: 2 additions & 2 deletions api/services/hit_testing_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_mode
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'top_k': retrieval_model['top_k'],
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enable'] else None,
Expand All @@ -77,7 +77,7 @@ def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_mode
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'dataset_id': str(dataset.id),
'query': query,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings,
Expand Down
11 changes: 9 additions & 2 deletions api/services/retrieval_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from langchain.embeddings.base import Embeddings
from core.index.vector_index.vector_index import VectorIndex
from core.model_providers.model_factory import ModelFactory
from extensions.ext_database import db
from models.dataset import Dataset

default_retrieval_model = {
Expand All @@ -21,10 +22,13 @@
class RetrievalService:

@classmethod
def embedding_search(cls, flask_app: Flask, dataset: Dataset, query: str,
def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
all_documents: list, search_method: str, embeddings: Embeddings):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(
Dataset.id == dataset_id
).first()

vector_index = VectorIndex(
dataset=dataset,
Expand Down Expand Up @@ -56,10 +60,13 @@ def embedding_search(cls, flask_app: Flask, dataset: Dataset, query: str,
all_documents.extend(documents)

@classmethod
def full_text_index_search(cls, flask_app: Flask, dataset: Dataset, query: str,
def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
all_documents: list, search_method: str, embeddings: Embeddings):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(
Dataset.id == dataset_id
).first()

vector_index = VectorIndex(
dataset=dataset,
Expand Down