Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: update dependency versions and streamline backend installation commands #3939

Merged
merged 6 commits into from
Sep 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -64,13 +64,11 @@ help: ## show this help message

reinstall_backend: ## forces reinstall all dependencies (no caching)
@echo 'Installing backend dependencies'
#@poetry install > /dev/null 2>&1
@cd src/backend/base && uv sync -n --reinstall && cd ../../../ && uv sync -n --reinstall > /dev/null 2>&1
@uv sync -n --reinstall --frozen

install_backend: ## install the backend dependencies
@echo 'Installing backend dependencies'
#@poetry install > /dev/null 2>&1
@cd src/backend/base && uv sync && cd ../../../ && uv sync > /dev/null 2>&1
@uv sync --frozen

install_frontend: ## install the frontend dependencies
@echo 'Installing frontend dependencies'
Expand Down Expand Up @@ -141,7 +139,7 @@ coverage: ## run the tests and generate a coverage report
#@poetry run coverage erase

unit_tests: ## run unit tests
cd src/backend/base && uv sync --extra dev && cd ../../../ && uv sync --extra dev > /dev/null 2>&1
@uv sync --extra dev --frozen
ifeq ($(async), true)
uv run pytest src/backend/tests \
--ignore=src/backend/tests/integration \
Expand Down
6 changes: 3 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ dependencies = [
"pyarrow>=14.0.0",
"wikipedia>=1.4.0",
"qdrant-client>=1.9.0",
"weaviate-client",
"weaviate-client>=4.8",
"cohere>=5.5.3",
"faiss-cpu>=1.8.0",
"types-cachetools>=5.3.0.5",
Expand Down Expand Up @@ -131,7 +131,7 @@ local = [
"ctransformers>=0.2.10"
]
clickhouse-connect = [
"clickhouse-connect[clickhouse-connect]==0.7.19"
"clickhouse-connect==0.7.19"
]

[project.scripts]
Expand Down Expand Up @@ -275,7 +275,7 @@ dev-dependencies = [
"ipykernel>=6.29.0",
"mypy>=1.11.0",
"ruff>=0.6.2,<0.7.0",
"httpx",
"httpx>=0.27.0",
"pytest>=8.2.0",
"types-requests>=2.32.0",
"requests>=2.32.0",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1211,7 +1211,7 @@
"show": true,
"title_case": false,
"type": "code",
"value": "import ast\nimport operator\nfrom typing import List\n\nfrom langchain.tools import StructuredTool\nfrom pydantic import BaseModel, Field\n\nfrom langflow.base.langchain_utilities.model import LCToolComponent\nfrom langflow.field_typing import Tool\nfrom langflow.inputs import MessageTextInput\nfrom langflow.schema import Data\n\n\nclass CalculatorToolComponent(LCToolComponent):\n display_name = \"Calculator\"\n description = \"Perform basic arithmetic operations on a given expression.\"\n icon = \"calculator\"\n name = \"CalculatorTool\"\n\n inputs = [\n MessageTextInput(\n name=\"expression\",\n display_name=\"Expression\",\n info=\"The arithmetic expression to evaluate (e.g., '4*4*(33/22)+12-20').\",\n ),\n ]\n\n class CalculatorToolSchema(BaseModel):\n expression: str = Field(..., description=\"The arithmetic expression to evaluate.\")\n\n def run_model(self) -> List[Data]:\n return self._evaluate_expression(self.expression)\n\n def build_tool(self) -> Tool:\n return StructuredTool.from_function(\n name=\"calculator\",\n description=\"Evaluate basic arithmetic expressions. Input should be a string containing the expression.\",\n func=self._evaluate_expression,\n args_schema=self.CalculatorToolSchema,\n )\n\n def _evaluate_expression(self, expression: str) -> List[Data]:\n try:\n # Define the allowed operators\n operators = {\n ast.Add: operator.add,\n ast.Sub: operator.sub,\n ast.Mult: operator.mul,\n ast.Div: operator.truediv,\n ast.Pow: operator.pow,\n }\n\n def eval_expr(node):\n if isinstance(node, ast.Num):\n return node.n\n elif isinstance(node, ast.BinOp):\n return operators[type(node.op)](eval_expr(node.left), eval_expr(node.right))\n elif isinstance(node, ast.UnaryOp):\n return operators[type(node.op)](eval_expr(node.operand))\n else:\n raise TypeError(node)\n\n # Parse the expression and evaluate it\n tree = ast.parse(expression, mode=\"eval\")\n result = eval_expr(tree.body)\n\n # Format the result to a reasonable number of decimal places\n formatted_result = f\"{result:.6f}\".rstrip(\"0\").rstrip(\".\")\n\n self.status = formatted_result\n return [Data(data={\"result\": formatted_result})]\n\n except (SyntaxError, TypeError, KeyError) as e:\n error_message = f\"Invalid expression: {str(e)}\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n except ZeroDivisionError:\n error_message = \"Error: Division by zero\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n except Exception as e:\n error_message = f\"Error: {str(e)}\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n"
"value": "import ast\nimport operator\n\nfrom langchain.tools import StructuredTool\nfrom pydantic import BaseModel, Field\n\nfrom langflow.base.langchain_utilities.model import LCToolComponent\nfrom langflow.field_typing import Tool\nfrom langflow.inputs import MessageTextInput\nfrom langflow.schema import Data\n\n\nclass CalculatorToolComponent(LCToolComponent):\n display_name = \"Calculator\"\n description = \"Perform basic arithmetic operations on a given expression.\"\n icon = \"calculator\"\n name = \"CalculatorTool\"\n\n inputs = [\n MessageTextInput(\n name=\"expression\",\n display_name=\"Expression\",\n info=\"The arithmetic expression to evaluate (e.g., '4*4*(33/22)+12-20').\",\n ),\n ]\n\n class CalculatorToolSchema(BaseModel):\n expression: str = Field(..., description=\"The arithmetic expression to evaluate.\")\n\n def run_model(self) -> list[Data]:\n return self._evaluate_expression(self.expression)\n\n def build_tool(self) -> Tool:\n return StructuredTool.from_function(\n name=\"calculator\",\n description=\"Evaluate basic arithmetic expressions. Input should be a string containing the expression.\",\n func=self._evaluate_expression,\n args_schema=self.CalculatorToolSchema,\n )\n\n def _evaluate_expression(self, expression: str) -> list[Data]:\n try:\n # Define the allowed operators\n operators = {\n ast.Add: operator.add,\n ast.Sub: operator.sub,\n ast.Mult: operator.mul,\n ast.Div: operator.truediv,\n ast.Pow: operator.pow,\n }\n\n def eval_expr(node):\n if isinstance(node, ast.Num):\n return node.n\n elif isinstance(node, ast.BinOp):\n return operators[type(node.op)](eval_expr(node.left), eval_expr(node.right))\n elif isinstance(node, ast.UnaryOp):\n return operators[type(node.op)](eval_expr(node.operand))\n else:\n raise TypeError(node)\n\n # Parse the expression and evaluate it\n tree = ast.parse(expression, mode=\"eval\")\n result = eval_expr(tree.body)\n\n # Format the result to a reasonable number of decimal places\n formatted_result = f\"{result:.6f}\".rstrip(\"0\").rstrip(\".\")\n\n self.status = formatted_result\n return [Data(data={\"result\": formatted_result})]\n\n except (SyntaxError, TypeError, KeyError) as e:\n error_message = f\"Invalid expression: {str(e)}\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n except ZeroDivisionError:\n error_message = \"Error: Division by zero\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n except Exception as e:\n error_message = f\"Error: {str(e)}\"\n self.status = error_message\n return [Data(data={\"error\": error_message})]\n"
},
"expression": {
"_input_type": "MessageTextInput",
Expand Down Expand Up @@ -1321,7 +1321,7 @@
"show": true,
"title_case": false,
"type": "code",
"value": "import importlib\nfrom typing import List, Union\n\nfrom langchain.tools import StructuredTool\nfrom langchain_experimental.utilities import PythonREPL\nfrom pydantic import BaseModel, Field\n\nfrom langflow.base.langchain_utilities.model import LCToolComponent\nfrom langflow.field_typing import Tool\nfrom langflow.inputs import StrInput\nfrom langflow.schema import Data\n\n\nclass PythonREPLToolComponent(LCToolComponent):\n display_name = \"Python REPL Tool\"\n description = \"A tool for running Python code in a REPL environment.\"\n name = \"PythonREPLTool\"\n\n inputs = [\n StrInput(\n name=\"name\",\n display_name=\"Tool Name\",\n info=\"The name of the tool.\",\n value=\"python_repl\",\n ),\n StrInput(\n name=\"description\",\n display_name=\"Tool Description\",\n info=\"A description of the tool.\",\n value=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n ),\n StrInput(\n name=\"global_imports\",\n display_name=\"Global Imports\",\n info=\"A comma-separated list of modules to import globally, e.g. 'math,numpy'.\",\n value=\"math\",\n ),\n StrInput(\n name=\"code\",\n display_name=\"Python Code\",\n info=\"The Python code to execute.\",\n value=\"print('Hello, World!')\",\n ),\n ]\n\n class PythonREPLSchema(BaseModel):\n code: str = Field(..., description=\"The Python code to execute.\")\n\n def get_globals(self, global_imports: Union[str, List[str]]) -> dict:\n global_dict = {}\n if isinstance(global_imports, str):\n modules = [module.strip() for module in global_imports.split(\",\")]\n elif isinstance(global_imports, list):\n modules = global_imports\n else:\n raise ValueError(\"global_imports must be either a string or a list\")\n\n for module in modules:\n try:\n imported_module = importlib.import_module(module)\n global_dict[imported_module.__name__] = imported_module\n except ImportError:\n raise ImportError(f\"Could not import module {module}\")\n return global_dict\n\n def build_tool(self) -> Tool:\n _globals = self.get_globals(self.global_imports)\n python_repl = PythonREPL(_globals=_globals)\n\n def run_python_code(code: str) -> str:\n try:\n return python_repl.run(code)\n except Exception as e:\n return f\"Error: {str(e)}\"\n\n tool = StructuredTool.from_function(\n name=self.name,\n description=self.description,\n func=run_python_code,\n args_schema=self.PythonREPLSchema,\n )\n\n self.status = f\"Python REPL Tool created with global imports: {self.global_imports}\"\n return tool\n\n def run_model(self) -> List[Data]:\n tool = self.build_tool()\n result = tool.run(self.code)\n return [Data(data={\"result\": result})]\n"
"value": "import importlib\n\nfrom langchain.tools import StructuredTool\nfrom langchain_experimental.utilities import PythonREPL\nfrom pydantic import BaseModel, Field\n\nfrom langflow.base.langchain_utilities.model import LCToolComponent\nfrom langflow.field_typing import Tool\nfrom langflow.inputs import StrInput\nfrom langflow.schema import Data\n\n\nclass PythonREPLToolComponent(LCToolComponent):\n display_name = \"Python REPL Tool\"\n description = \"A tool for running Python code in a REPL environment.\"\n name = \"PythonREPLTool\"\n\n inputs = [\n StrInput(\n name=\"name\",\n display_name=\"Tool Name\",\n info=\"The name of the tool.\",\n value=\"python_repl\",\n ),\n StrInput(\n name=\"description\",\n display_name=\"Tool Description\",\n info=\"A description of the tool.\",\n value=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n ),\n StrInput(\n name=\"global_imports\",\n display_name=\"Global Imports\",\n info=\"A comma-separated list of modules to import globally, e.g. 'math,numpy'.\",\n value=\"math\",\n ),\n StrInput(\n name=\"code\",\n display_name=\"Python Code\",\n info=\"The Python code to execute.\",\n value=\"print('Hello, World!')\",\n ),\n ]\n\n class PythonREPLSchema(BaseModel):\n code: str = Field(..., description=\"The Python code to execute.\")\n\n def get_globals(self, global_imports: str | list[str]) -> dict:\n global_dict = {}\n if isinstance(global_imports, str):\n modules = [module.strip() for module in global_imports.split(\",\")]\n elif isinstance(global_imports, list):\n modules = global_imports\n else:\n raise ValueError(\"global_imports must be either a string or a list\")\n\n for module in modules:\n try:\n imported_module = importlib.import_module(module)\n global_dict[imported_module.__name__] = imported_module\n except ImportError:\n raise ImportError(f\"Could not import module {module}\")\n return global_dict\n\n def build_tool(self) -> Tool:\n _globals = self.get_globals(self.global_imports)\n python_repl = PythonREPL(_globals=_globals)\n\n def run_python_code(code: str) -> str:\n try:\n return python_repl.run(code)\n except Exception as e:\n return f\"Error: {str(e)}\"\n\n tool = StructuredTool.from_function(\n name=self.name,\n description=self.description,\n func=run_python_code,\n args_schema=self.PythonREPLSchema,\n )\n\n self.status = f\"Python REPL Tool created with global imports: {self.global_imports}\"\n return tool\n\n def run_model(self) -> list[Data]:\n tool = self.build_tool()\n result = tool.run(self.code)\n return [Data(data={\"result\": result})]\n"
},
"description": {
"_input_type": "StrInput",
Expand Down
Loading
Loading