Skip to content

Commit

Permalink
community[minor]: Add support for modle2vec embeddings (#28507)
Browse files Browse the repository at this point in the history
This PR add an embeddings integration for model2vec, the
`Model2vecEmbeddings` class.

- **Description**: [Model2Vec](https://github.com/MinishLab/model2vec)
lets you turn any sentence transformer into a really small static model
and makes running the model faster.
- **Issue**:
- **Dependencies**: model2vec
([pypi](https://pypi.org/project/model2vec/))
- **Twitter handle:**:

- [x] **Add tests and docs**: 
-
[Test](https://github.com/blacksmithop/langchain/blob/model2vec_embeddings/libs/community/langchain_community/embeddings/model2vec.py),
[docs](https://github.com/blacksmithop/langchain/blob/model2vec_embeddings/docs/docs/integrations/text_embedding/model2vec.ipynb)

- [x] **Lint and test**:

---------

Co-authored-by: Abhinav KM <[email protected]>
Co-authored-by: Bagatur <[email protected]>
  • Loading branch information
3 people authored Dec 9, 2024
1 parent fbf0704 commit 317a38b
Show file tree
Hide file tree
Showing 5 changed files with 284 additions and 0 deletions.
201 changes: 201 additions & 0 deletions docs/docs/integrations/text_embedding/model2vec.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e8712110",
"metadata": {},
"source": [
"## Overview\n",
"\n",
"Model2Vec is a technique to turn any sentence transformer into a really small static model\n",
"[model2vec](https://github.com/MinishLab/model2vec) can be used to generate embeddings."
]
},
{
"cell_type": "markdown",
"id": "266dd424",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"```bash\n",
"pip install -U langchain-community\n",
"```\n"
]
},
{
"cell_type": "markdown",
"id": "78ab91a6",
"metadata": {},
"source": [
"## Instantiation"
]
},
{
"cell_type": "markdown",
"id": "d06e7719",
"metadata": {},
"source": [
"Ensure that `model2vec` is installed\n",
"\n",
"```bash\n",
"pip install -U model2vec\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "f8ea1ed5",
"metadata": {},
"source": [
"## Indexing and Retrieval"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d25dc22d-b656-46c6-a42d-eace958590cd",
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:17.176956Z",
"start_time": "2023-05-24T15:13:15.399076Z"
},
"execution": {
"iopub.execute_input": "2024-03-29T15:39:19.252281Z",
"iopub.status.busy": "2024-03-29T15:39:19.252101Z",
"iopub.status.idle": "2024-03-29T15:39:19.339106Z",
"shell.execute_reply": "2024-03-29T15:39:19.338614Z",
"shell.execute_reply.started": "2024-03-29T15:39:19.252260Z"
}
},
"outputs": [],
"source": [
"from langchain_community.embeddings import Model2vecEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8397b91f-a1f9-4be6-a699-fedaada7c37a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:17.193751Z",
"start_time": "2023-05-24T15:13:17.182053Z"
},
"execution": {
"iopub.execute_input": "2024-03-29T15:39:19.901573Z",
"iopub.status.busy": "2024-03-29T15:39:19.900935Z",
"iopub.status.idle": "2024-03-29T15:39:19.906540Z",
"shell.execute_reply": "2024-03-29T15:39:19.905345Z",
"shell.execute_reply.started": "2024-03-29T15:39:19.901529Z"
}
},
"outputs": [],
"source": [
"embeddings = Model2vecEmbeddings(\"minishlab/potion-base-8M\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "abcf98b7-424c-4691-a1cd-862c3d53be11",
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:17.844903Z",
"start_time": "2023-05-24T15:13:17.198751Z"
},
"execution": {
"iopub.execute_input": "2024-03-29T15:39:20.434581Z",
"iopub.status.busy": "2024-03-29T15:39:20.433117Z",
"iopub.status.idle": "2024-03-29T15:39:22.178650Z",
"shell.execute_reply": "2024-03-29T15:39:22.176058Z",
"shell.execute_reply.started": "2024-03-29T15:39:20.434501Z"
},
"scrolled": true
},
"outputs": [],
"source": [
"query_text = \"This is a test query.\"\n",
"query_result = embeddings.embed_query(query_text)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "98897454-b280-4ee1-bbb9-2c6c15342f87",
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-24T15:13:18.605339Z",
"start_time": "2023-05-24T15:13:17.845906Z"
},
"execution": {
"iopub.execute_input": "2024-03-29T15:39:28.164009Z",
"iopub.status.busy": "2024-03-29T15:39:28.161759Z",
"iopub.status.idle": "2024-03-29T15:39:30.217232Z",
"shell.execute_reply": "2024-03-29T15:39:30.215348Z",
"shell.execute_reply.started": "2024-03-29T15:39:28.163876Z"
},
"scrolled": true
},
"outputs": [],
"source": [
"document_text = \"This is a test document.\"\n",
"document_result = embeddings.embed_documents([document_text])"
]
},
{
"cell_type": "markdown",
"id": "11bac134",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Here's how you would directly make use of `model2vec`\n",
"\n",
"```python\n",
"from model2vec import StaticModel\n",
"\n",
"# Load a model from the HuggingFace hub (in this case the potion-base-8M model)\n",
"model = StaticModel.from_pretrained(\"minishlab/potion-base-8M\")\n",
"\n",
"# Make embeddings\n",
"embeddings = model.encode([\"It's dangerous to go alone!\", \"It's a secret to everybody.\"])\n",
"\n",
"# Make sequences of token embeddings\n",
"token_embeddings = model.encode_as_sequence([\"It's dangerous to go alone!\", \"It's a secret to everybody.\"])\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "d81e21aa",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For more information check out the model2vec github [repo](https://github.com/MinishLab/model2vec)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
5 changes: 5 additions & 0 deletions libs/community/langchain_community/embeddings/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,9 @@
from langchain_community.embeddings.mlflow_gateway import (
MlflowAIGatewayEmbeddings,
)
from langchain_community.embeddings.model2vec import (
Model2vecEmbeddings,
)
from langchain_community.embeddings.modelscope_hub import (
ModelScopeEmbeddings,
)
Expand Down Expand Up @@ -289,6 +292,7 @@
"MlflowAIGatewayEmbeddings",
"MlflowCohereEmbeddings",
"MlflowEmbeddings",
"Model2vecEmbeddings",
"ModelScopeEmbeddings",
"MosaicMLInstructorEmbeddings",
"NLPCloudEmbeddings",
Expand Down Expand Up @@ -372,6 +376,7 @@
"MlflowAIGatewayEmbeddings": "langchain_community.embeddings.mlflow_gateway",
"MlflowCohereEmbeddings": "langchain_community.embeddings.mlflow",
"MlflowEmbeddings": "langchain_community.embeddings.mlflow",
"Model2vecEmbeddings": "langchain_community.embeddings.model2vec",
"ModelScopeEmbeddings": "langchain_community.embeddings.modelscope_hub",
"MosaicMLInstructorEmbeddings": "langchain_community.embeddings.mosaicml",
"NLPCloudEmbeddings": "langchain_community.embeddings.nlpcloud",
Expand Down
66 changes: 66 additions & 0 deletions libs/community/langchain_community/embeddings/model2vec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
"""Wrapper around model2vec embedding models."""

from typing import List

from langchain_core.embeddings import Embeddings


class Model2vecEmbeddings(Embeddings):
"""model2v embedding models.
Install model2vec first, run 'pip install -U model2vec'.
The github repository for model2vec is : https://github.com/MinishLab/model2vec
Example:
.. code-block:: python
from langchain_community.embeddings import Model2vecEmbeddings
embedding = Model2vecEmbeddings("minishlab/potion-base-8M")
embedding.embed_documents([
"It's dangerous to go alone!",
"It's a secret to everybody.",
])
embedding.embed_query(
"Take this with you."
)
"""

def __init__(self, model: str):
"""Initialize embeddings.
Args:
model: Model name.
"""
try:
from model2vec import StaticModel
except ImportError as e:
raise ImportError(
"Unable to import model2vec, please install with "
"`pip install -U model2vec`."
) from e
self._model = StaticModel.from_pretrained(model)

def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed documents using the model2vec embeddings model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""

return self._model.encode_as_sequence(texts)

def embed_query(self, text: str) -> List[float]:
"""Embed a query using the model2vec embeddings model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""

return self._model.encode(text)
1 change: 1 addition & 0 deletions libs/community/tests/unit_tests/embeddings/test_imports.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
"MlflowAIGatewayEmbeddings",
"MlflowEmbeddings",
"MlflowCohereEmbeddings",
"Model2vecEmbeddings",
"ModelScopeEmbeddings",
"TensorflowHubEmbeddings",
"SagemakerEndpointEmbeddings",
Expand Down
11 changes: 11 additions & 0 deletions libs/community/tests/unit_tests/embeddings/test_model2vec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
from langchain_community.embeddings.model2vec import Model2vecEmbeddings


def test_hugginggface_inferenceapi_embedding_documents_init() -> None:
"""Test model2vec embeddings."""
try:
embedding = Model2vecEmbeddings("minishlab/potion-base-8M")
assert len(embedding.embed_query("hi")) == 256
except Exception:
# model2vec is not installed
assert True

0 comments on commit 317a38b

Please sign in to comment.