-
Notifications
You must be signed in to change notification settings - Fork 45
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- C1 Matrix Util Product #1 (1, 2, 3) - C1 Matrix Util Product #2 (4, 5, 6) - C1 Matrix Util Product #3 (7, 8, 9) - C1 Matrix Util Product #4 (10, 11, 12) - C1 Matrix Util Product #5 (13, 14, 15) - C1 Matrix Util Product #6 (16, 17, 18) - C1 Matrix Util Product #7 (19, 20, 21) - C1 Matrix Util Product #8 (22, 23, 24) - C1 Cartesian Phi Alpha Beta Theta Standard (25, 26, 27) - C1 Cartesian Phi Psi Theta Delta Standard #1 (28, 29, 30) - C1 Cartesian Phi Psi Theta Delta Standard #2 (31, 32, 33) - C1 Cartesian Phi Psi Theta Delta Alpha (34, 35, 36) - C1 Cartesian Phi Psi Theta Delta Beta (37, 38, 39) - C1 Cartesian Fuhr Rzeszotnik Shell (40, 41, 42) - C1 Cartesian Fuhr Rzeszotnik Rho (43, 44) - C1 Cartesian Fuhr Rzeszotnik Epsilon (45, 46) - C1 Cartesian Fuhr Rzeszotnik Eta (47, 48) - C1 Cartesian Fuhr Rzeszotnik Sigma (49, 50) - C1 Cartesian Fuhr Rzeszotnik Constructor #1 (51, 52) - C1 Cartesian Fuhr Rzeszotnik Constructor #2 (53, 54) - C1 Cartesian Fuhr Rzeszotnik Jordan Normal Left (55, 56) - C1 Cartesian Fuhr Rzeszotnik Jordan Normal Center (57, 58) - C1 Cartesian Fuhr Rzeszotnik Jordan Normal Right (58, 60) - C1 Cartesian Fuhr Rzeszotnik #1 (61, 62, 63) - C1 Cartesian Fuhr Rzeszotnik #2 (64, 65) - Numerical Common Unitary Matrix Shell (66, 67, 68) - Numerical Common Unitary Matrix Constructor (69, 70) - C1 Util Numerical Complex Unitary (71, 72) - C1 Matrix Util Unsafe Determinant #1 (73, 74, 75) - C1 Matrix Util Unsafe Determinant #2 (76, 77, 78) - Standard Instance of the Unitary Matrix (79, 80, 81) - Unitary Matrix Condition Number (82, 83, 84) Bug Fixes/Re-organization: Samples: IdeaDRIP: - Matrix Norm (85-87) - Matrix Norm Preliminaries (88-106) - Matrix Norms Induced by Vector (107-117) - Matrix Norms Induced by Vector p-Norms (118-120)
- Loading branch information
Showing
8 changed files
with
819 additions
and
104 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
|
||
Features: | ||
|
||
- C1 Matrix Util Product #1 (1, 2, 3) | ||
- C1 Matrix Util Product #2 (4, 5, 6) | ||
- C1 Matrix Util Product #3 (7, 8, 9) | ||
- C1 Matrix Util Product #4 (10, 11, 12) | ||
- C1 Matrix Util Product #5 (13, 14, 15) | ||
- C1 Matrix Util Product #6 (16, 17, 18) | ||
- C1 Matrix Util Product #7 (19, 20, 21) | ||
- C1 Matrix Util Product #8 (22, 23, 24) | ||
- C1 Cartesian Phi Alpha Beta Theta Standard (25, 26, 27) | ||
- C1 Cartesian Phi Psi Theta Delta Standard #1 (28, 29, 30) | ||
- C1 Cartesian Phi Psi Theta Delta Standard #2 (31, 32, 33) | ||
- C1 Cartesian Phi Psi Theta Delta Alpha (34, 35, 36) | ||
- C1 Cartesian Phi Psi Theta Delta Beta (37, 38, 39) | ||
- C1 Cartesian Fuhr Rzeszotnik Shell (40, 41, 42) | ||
- C1 Cartesian Fuhr Rzeszotnik Rho (43, 44) | ||
- C1 Cartesian Fuhr Rzeszotnik Epsilon (45, 46) | ||
- C1 Cartesian Fuhr Rzeszotnik Eta (47, 48) | ||
- C1 Cartesian Fuhr Rzeszotnik Sigma (49, 50) | ||
- C1 Cartesian Fuhr Rzeszotnik Constructor #1 (51, 52) | ||
- C1 Cartesian Fuhr Rzeszotnik Constructor #2 (53, 54) | ||
- C1 Cartesian Fuhr Rzeszotnik Jordan Normal Left (55, 56) | ||
- C1 Cartesian Fuhr Rzeszotnik Jordan Normal Center (57, 58) | ||
- C1 Cartesian Fuhr Rzeszotnik Jordan Normal Right (58, 60) | ||
- C1 Cartesian Fuhr Rzeszotnik #1 (61, 62, 63) | ||
- C1 Cartesian Fuhr Rzeszotnik #2 (64, 65) | ||
- Numerical Common Unitary Matrix Shell (66, 67, 68) | ||
- Numerical Common Unitary Matrix Constructor (69, 70) | ||
- C1 Util Numerical Complex Unitary (71, 72) | ||
- C1 Matrix Util Unsafe Determinant #1 (73, 74, 75) | ||
- C1 Matrix Util Unsafe Determinant #2 (76, 77, 78) | ||
- Standard Instance of the Unitary Matrix (79, 80, 81) | ||
- Unitary Matrix Condition Number (82, 83, 84) | ||
|
||
|
||
Bug Fixes/Re-organization: | ||
|
||
Samples: | ||
|
||
IdeaDRIP: | ||
|
||
- Matrix Norm (85-87) | ||
- Matrix Norm Preliminaries (88-106) | ||
- Matrix Norms Induced by Vector (107-117) | ||
- Matrix Norms Induced by Vector p-Norms (118-120) |
278 changes: 278 additions & 0 deletions
278
src/main/java/org/drip/numerical/complex/C1CartesianFuhrRzeszotnik.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
|
||
package org.drip.numerical.complex; | ||
|
||
import org.drip.numerical.matrix.R1SquareRotation2x2; | ||
|
||
/* | ||
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- | ||
*/ | ||
|
||
/*! | ||
* Copyright (C) 2025 Lakshmi Krishnamurthy | ||
* | ||
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics, | ||
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment | ||
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity, | ||
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support, | ||
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning, | ||
* graph builder/navigator, and computational support. | ||
* | ||
* https://lakshmidrip.github.io/DROP/ | ||
* | ||
* DROP is composed of three modules: | ||
* | ||
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/ | ||
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/ | ||
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/ | ||
* | ||
* DROP Product Core implements libraries for the following: | ||
* - Fixed Income Analytics | ||
* - Loan Analytics | ||
* - Transaction Cost Analytics | ||
* | ||
* DROP Portfolio Core implements libraries for the following: | ||
* - Asset Allocation Analytics | ||
* - Asset Liability Management Analytics | ||
* - Capital Estimation Analytics | ||
* - Exposure Analytics | ||
* - Margin Analytics | ||
* - XVA Analytics | ||
* | ||
* DROP Computational Core implements libraries for the following: | ||
* - Algorithm Support | ||
* - Computation Support | ||
* - Function Analysis | ||
* - Graph Algorithm | ||
* - Model Validation | ||
* - Numerical Analysis | ||
* - Numerical Optimizer | ||
* - Spline Builder | ||
* - Statistical Learning | ||
* | ||
* Documentation for DROP is Spread Over: | ||
* | ||
* - Main => https://lakshmidrip.github.io/DROP/ | ||
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki | ||
* - GitHub => https://github.com/lakshmiDRIP/DROP | ||
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md | ||
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html | ||
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal | ||
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html | ||
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html | ||
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* | ||
* You may obtain a copy of the License at | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
/** | ||
* <i>C1CartesianFuhrRzeszotnik</i> implements the type and Functionality associated with a C<sup>1</sup> | ||
* Square Matrix parameterized by the Fuhr-Rzeszotnik parameters <code>rho</code>, <code>epsilon</code>, | ||
* <code>eta</code>, and <code>sigma</code> Fields. The References are: | ||
* | ||
* <br><br> | ||
* <ul> | ||
* <li> | ||
* Fuhr, H., and Z. Rzeszotnik (2018): A Note on Factoring Unitary Matrices <i>Linear Algebra and | ||
* its Applications</i> <b>547</b> 32-44 | ||
* </li> | ||
* <li> | ||
* Horn, R. A., and C. R. Johnson (2013): <i>Matrix Analysis</i> <b>Cambridge University Press</b> | ||
* Cambridge UK | ||
* </li> | ||
* <li> | ||
* Li, C. K., and E. Poon (2002): Additive Decomposition of Real Matrices <i>Linear and Multilinear | ||
* Algebra</i> <b>50 (4)</b> 321-326 | ||
* </li> | ||
* <li> | ||
* Marvian, I. (2022): Restrictions on realizable Unitary Operations imposed by Symmetry and | ||
* Locality <i>Nature Science</i> <b>18 (3)</b> 283-289 | ||
* </li> | ||
* <li> | ||
* Wikipedia (2024): Unitary Matrix https://en.wikipedia.org/wiki/Unitary_matrix | ||
* </li> | ||
* </ul> | ||
* | ||
* <br><br> | ||
* <ul> | ||
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li> | ||
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li> | ||
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li> | ||
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/complex/README.md">Implementation of Complex Number Suite</a></li> | ||
* </ul> | ||
* <br><br> | ||
* | ||
* @author Lakshmi Krishnamurthy | ||
*/ | ||
|
||
public class C1CartesianFuhrRzeszotnik extends C1Square | ||
{ | ||
private double _eta = Double.NaN; | ||
private double _rho = Double.NaN; | ||
private double _sigma = Double.NaN; | ||
private double _epsilon = Double.NaN; | ||
private C1Square _jordanNormalCenter = null; | ||
private R1SquareRotation2x2 _jordanNormalLeft = null; | ||
private R1SquareRotation2x2 _jordanNormalRight = null; | ||
|
||
/** | ||
* Construct a Standard Instance of <i>C1CartesianFuhrRzeszotnik</i> | ||
* | ||
* @param eta "Eta" | ||
* @param rho "Rho" | ||
* @param sigma "Sigma" | ||
* @param epsilon "Epsilon" | ||
* | ||
* @return <i>C1CartesianFuhrRzeszotnik</i> Instance | ||
*/ | ||
|
||
public static C1CartesianFuhrRzeszotnik Standard ( | ||
final double eta, | ||
final double rho, | ||
final double sigma, | ||
final double epsilon) | ||
{ | ||
R1SquareRotation2x2 jordanNormalLeft = R1SquareRotation2x2.Standard (rho); | ||
|
||
if (null == jordanNormalLeft) { | ||
return null; | ||
} | ||
|
||
C1Square jordanNormalCenter = C1Square.Rotation2x2 (epsilon, eta); | ||
|
||
if (null == jordanNormalCenter) { | ||
return null; | ||
} | ||
|
||
R1SquareRotation2x2 jordanNormalRight = R1SquareRotation2x2.Standard (sigma); | ||
|
||
if (null == jordanNormalRight) { | ||
return null; | ||
} | ||
|
||
C1Cartesian[][] c1Grid = C1MatrixUtil.Product ( | ||
jordanNormalLeft.r1Grid(), | ||
jordanNormalCenter.c1Grid() | ||
); | ||
|
||
return null == c1Grid || null == (c1Grid = C1MatrixUtil.Product (c1Grid, jordanNormalRight.r1Grid())) | ||
? null : new C1CartesianFuhrRzeszotnik ( | ||
c1Grid, | ||
eta, | ||
rho, | ||
sigma, | ||
epsilon, | ||
jordanNormalLeft, | ||
jordanNormalCenter, | ||
jordanNormalRight | ||
); | ||
} | ||
|
||
private C1CartesianFuhrRzeszotnik ( | ||
final C1Cartesian[][] c1Grid, | ||
final double eta, | ||
final double rho, | ||
final double sigma, | ||
final double epsilon, | ||
final R1SquareRotation2x2 jordanNormalLeft, | ||
final C1Square jordanNormalCenter, | ||
final R1SquareRotation2x2 jordanNormalRight) | ||
{ | ||
super (c1Grid); | ||
|
||
_eta = eta; | ||
_rho = rho; | ||
_sigma = sigma; | ||
_epsilon = epsilon; | ||
_jordanNormalLeft = jordanNormalLeft; | ||
_jordanNormalRight = jordanNormalRight; | ||
_jordanNormalCenter = jordanNormalCenter; | ||
} | ||
|
||
/** | ||
* Retrieve <code>Rho</code> | ||
* | ||
* @return <code>Rho</code> | ||
*/ | ||
|
||
public double rho() | ||
{ | ||
return _rho; | ||
} | ||
|
||
/** | ||
* Retrieve <code>Epsilon</code> | ||
* | ||
* @return <code>Epsilon</code> | ||
*/ | ||
|
||
public double epsilon() | ||
{ | ||
return _epsilon; | ||
} | ||
|
||
/** | ||
* Retrieve <code>Eta</code> | ||
* | ||
* @return <code>Eta</code> | ||
*/ | ||
|
||
public double eta() | ||
{ | ||
return _eta; | ||
} | ||
|
||
/** | ||
* Retrieve <code>Sigma</code> | ||
* | ||
* @return <code>Sigma</code> | ||
*/ | ||
|
||
public double sigma() | ||
{ | ||
return _sigma; | ||
} | ||
|
||
/** | ||
* Retrieve the Jordan Normal Left Part of <i>C1CartesianPhiPsiThetaDelta</i> | ||
* | ||
* @return Jordan Normal Left Part of <i>C1CartesianPhiPsiThetaDelta</i> | ||
*/ | ||
|
||
public R1SquareRotation2x2 jordanNormalLeft() | ||
{ | ||
return _jordanNormalLeft; | ||
} | ||
|
||
/** | ||
* Retrieve the Jordan Normal Center Part of <i>C1CartesianPhiPsiThetaDelta</i> | ||
* | ||
* @return Jordan Normal Center Part of <i>C1CartesianPhiPsiThetaDelta</i> | ||
*/ | ||
|
||
public C1Square jordanNormalCenter() | ||
{ | ||
return _jordanNormalCenter; | ||
} | ||
|
||
/** | ||
* Retrieve the Jordan Normal Right Part of <i>C1CartesianPhiPsiThetaDelta</i> | ||
* | ||
* @return Jordan Normal Right Part of <i>C1CartesianPhiPsiThetaDelta</i> | ||
*/ | ||
|
||
public R1SquareRotation2x2 jordanNormalRight() | ||
{ | ||
return _jordanNormalRight; | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.