Burges, Christopher, et al. "Learning to rank using gradient descent." Proceedings of the 22nd International Conference on Machine learning (ICML-05). 2005.
pytorch, pytorch-ignite, torchviz, numpy tqdm matplotlib
pytorch: see the official document.
$ pip install pytorch-ignite torchviz numpy tqdm matplotlib
- Train a ranking model
$ python train.py
-h
option shows help.
$ python train.py -h
usage: train.py [-h] [-b BATCH_SIZE] [-e EPOCH] [-g G] [-d D] [--compile_model]
trains a ranking model for mnist
options:
-h, --help show this help message and exit
-b, --batch_size BATCH_SIZE
batch size
-e, --epoch EPOCH epoch
-g G GPU ID (negative value indicates CPU)
-d D result directory
--compile_model enable torch.compile
- Visualize scores for test data
$ python visualize.py -m model_file -o output_file
-h
option shows help.
$ python visualize.py -h
usage: visualize.py [-h] -m M [-b B] [-o O] [-t T]
visualizes scores for test dataset
optional arguments:
-h, --help show this help message and exit
-m M model file generated from train.py
-b B batch size
-o O output file
-t T title of the figure