Skip to content

Chainer and PyTorch implementation of GAN with gradient reversal layer

License

Notifications You must be signed in to change notification settings

kzkadc/gan-with-grl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

878dd46 · Mar 19, 2022

History

9 Commits
Sep 13, 2020
Sep 13, 2020
Mar 19, 2022
Sep 13, 2020

Repository files navigation

GAN with Gradient Reversal Layer

Implemented with Chainer and PyTorch.

Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The Journal of Machine Learning Research 17.1 (2016): 2096-2030.

Requirements (Chainer)

Chainer, OpenCV, NumPy

$ pip install chainer opencv-python numpy

Requirements (PyTorch)

PyTorch, Ignite, OpenCV, NumPy

PyTorch: see the official document.

$ pip install pytorch-ignite opencv-python numpy

Training of GAN

$ python train_gan.py [options]

Image generation from trained generator

$ python generate.py [options]

You can read help with -h option.

$ python gan.py -h
usage: gan.py [-h] [-b B] [-z Z] [-e E] [-r R] [--save_model]

Trains GAN

optional arguments:
  -h, --help    show this help message and exit
  -b B          batch size
  -z Z          dimension
  -e E          epoch
  -r R          result directory
  --save_model  save models
  
$ python generate.py -h
usage: generate.py [-h] -m M [-n N] [-z Z] [-r R]

Generates images randomly from trained generator model

optional arguments:
  -h, --help  show this help message and exit
  -m M        generator model file
  -n N        number of images to generate
  -z Z        dimension
  -r R        result directory

About

Chainer and PyTorch implementation of GAN with gradient reversal layer

Topics

Resources

License

Stars

Watchers

Forks

Languages