Use LLM and Vector Embedding APIs on the web platform. Uses standard
fetch()
and thus runs everywhere, including in Service Workers.
The most simple API to use LLMs. It can hardly be easier than 1 function call 😉
AI models currently supported:
- ✅ OpenAI: Any OpenAI LLM, including GPT-4 and newer models.
- ✅ Promise-based
- ✅ Streaming
- ✅ Single message system prompt (instruct)
- ✅ Multi-message prompt (chat)
- ✅ Cost model
- ✅ Text Embedding
- ✅ Anthropic: The whole Claude model-series, including Opus.
- ✅ Promise-based
- ✅ Streaming
- ✅ Single message system prompt (instruct)
- ✅ Multi-message prompt (chat)
- ✅ Cost model
- 〰️ Text Embedding (Anthropic doesn't provide embedding endpoints)
- ✅ Perplexity: All models supported.
- ✅ Promise-based
- ✅ Streaming
- ✅ Single message system prompt (instruct)
- ✅ Multi-message prompt (chat)
- ✅ Cost model (including flat fee)
- 〰️ Text Embedding (Perplexity doesn't provide embedding endpoints)
- ✅ VoyageAI: Text Embedding models
- ✅ Text Embedding
- ✅ Mixedbread AI: Text Embedding models, specifically for German
- ✅ Text Embedding
AI providers and models to be supported soon:
- ❌ Google: The whole Gemeni model-series, including 1.5 Pro, Advanced.
- ❌ Cohere: The whole Command model-series, including Command R Plus.
- ❌ Ollama: All Ollama LLMs, including Llama 3.
- ❌ HuggingFace: All HuggingFace LLMs.
-
🔨 First install the library:
npm/pnpm/yarn/bun install cross-llm
-
💡 Take a look at the super-simple code examples.
import { systemPrompt } from "cross-llm";
const promptResonse = await systemPrompt("Respond with JSON: { works: true }", "anthropic", {
model: "claude-3-haiku-20240307",
temperature: 0.7,
max_tokens: 4096
}, { apiKey: import.meta.env[`anthropic_api_key`] });
// promptResponse.message => {\n "works": true\n}
// promptResponse.usage.outputTokens => 12
// promptResponse.usage.inputTokens => 42
// promptResponse.usage.totalTokens => 54
// promptResponse.price.input => 0.0000105
// promptResponse.price.output => 0.000015
// promptResponse.price.total => 0.0000255
// promptResponse.finishReason => "end_turn"
// promptResponse.elapsedMs => 888 // milliseconds elapsed
// promptResponse.raw => provider's raw completion response object, no mapping
// promptResponse.rawBody => the exact body object passed to the provider's completion endpoint
import { embed } from "cross-llm";
const textEmbedding = await embed(["Let's have fun with JSON, shall we?"], "voyageai", {
model: "voyage-large-2-instruct",
}, { apiKey: import.meta.env[`voyageai_api_key`], });
// textEmbedding.data[0].embedding => [0.1134245, ...] // n-dimensional embedding vector
// textEmbedding.data[0].index => 0
// textEmbedding.usage.totalTokens => 23
// textEmbedding.price.total => calculated price
// textEmbedding.elapsedMs => 564 // in milliseconds
import { promptStreaming, type PromptFinishReason, type Usage, type Price } from "cross-llm";
await promptStreaming(
[
{
role: "user",
content: "Let's have fun with JSON, shall we?",
},
{
role: "assistant",
content: "Yeah. Let's have fun with JSON.",
},
{
role: "user",
content: "Respond with JSON: { works: true }",
},
],
"openai",
async (partialText: string, elapsedMs: number) => {
// onChunk
// stream-write to terminal
process.stdout.write(partialText);
},
async (fullText: string,
elapsedMs: number,
usage: Usage,
finishReason: PromptFinishReason,
price: Price) => {
// onStop
console.log("")
console.log("parsed JSON", JSON.parse(fullText));
console.log("finishReason", finishReason);
console.log("elapsedMs", elapsedMs);
console.log("usage", usage);
console.log("price", price);
},
async (error: unknown, elapsedMs: number) => {
// onError
console.log("error", error, elapsedMs, 'ms elapsed');
},
{
model: "gpt-4-turbo",
temperature: 0.7,
response_format: {
type: "json_object",
}
},
{
// union of options passed down, mapped internally
apiKey: import.meta.env[`openai_api_key`],
},
);
- 📋 Copy & Paste -> enjoy! 🎉
Simply create an issue or fork this repository, clone it and create a Pull Request (PR). I'm just implementing the features, AI model providers, cost model mappings that I need, but feel free to simply add your models or implement new AI providers. Every contribution is very welcome! 🤗
Please verify that your model/provider has been added correctly in ./src/models
.
npm run print-models
Please add example code for when you implement a new AI provider in ./examples
.
npm run example openai.ts
or
npm run example voyageai-embedding.ts
Please write and run unit/integration/e2e tests using jest
by creating ./src/*.spec.ts
test suites:
npm run test
Run the following command to update the ./dist
files:
npm run build
Create a new NPM release build:
npm pack
Check the package contents for integrity.
npm publish