Skip to content
/ cross-llm Public

Universal library to integrate with LLMs. Supports Node.js, Deno, Bun, Service Workers, Web Extensions.

License

Notifications You must be signed in to change notification settings

kyr0/cross-llm

Repository files navigation

cross-llm

Use LLM and Vector Embedding APIs on the web platform. Uses standard fetch() and thus runs everywhere, including in Service Workers.

🌟 Features

The most simple API to use LLMs. It can hardly be easier than 1 function call 😉

AI models currently supported:

  • OpenAI: Any OpenAI LLM, including GPT-4 and newer models.
    • ✅ Promise-based
    • ✅ Streaming
    • ✅ Single message system prompt (instruct)
    • ✅ Multi-message prompt (chat)
    • ✅ Cost model
    • ✅ Text Embedding
  • Anthropic: The whole Claude model-series, including Opus.
    • ✅ Promise-based
    • ✅ Streaming
    • ✅ Single message system prompt (instruct)
    • ✅ Multi-message prompt (chat)
    • ✅ Cost model
    • 〰️ Text Embedding (Anthropic doesn't provide embedding endpoints)
  • Perplexity: All models supported.
    • ✅ Promise-based
    • ✅ Streaming
    • ✅ Single message system prompt (instruct)
    • ✅ Multi-message prompt (chat)
    • ✅ Cost model (including flat fee)
    • 〰️ Text Embedding (Perplexity doesn't provide embedding endpoints)
  • VoyageAI: Text Embedding models
    • ✅ Text Embedding
  • Mixedbread AI: Text Embedding models, specifically for German
    • ✅ Text Embedding

AI providers and models to be supported soon:

  • Google: The whole Gemeni model-series, including 1.5 Pro, Advanced.
  • Cohere: The whole Command model-series, including Command R Plus.
  • Ollama: All Ollama LLMs, including Llama 3.
  • HuggingFace: All HuggingFace LLMs.

📚 Usage

  1. 🔨 First install the library: npm/pnpm/yarn/bun install cross-llm

  2. 💡 Take a look at the super-simple code examples.

Single System Prompt

import { systemPrompt } from "cross-llm";

const promptResonse = await systemPrompt("Respond with JSON: { works: true }", "anthropic", {
  model: "claude-3-haiku-20240307",
  temperature: 0.7,
  max_tokens: 4096
}, { apiKey: import.meta.env[`anthropic_api_key`] });

// promptResponse.message => {\n  "works": true\n}
// promptResponse.usage.outputTokens => 12
// promptResponse.usage.inputTokens => 42
// promptResponse.usage.totalTokens => 54
// promptResponse.price.input => 0.0000105
// promptResponse.price.output => 0.000015
// promptResponse.price.total => 0.0000255
// promptResponse.finishReason => "end_turn"
// promptResponse.elapsedMs => 888 // milliseconds elapsed
// promptResponse.raw => provider's raw completion response object, no mapping
// promptResponse.rawBody => the exact body object passed to the provider's completion endpoint

Text Embedding

import { embed } from "cross-llm";

const textEmbedding = await embed(["Let's have fun with JSON, shall we?"], "voyageai", {
  model: "voyage-large-2-instruct",
}, { apiKey: import.meta.env[`voyageai_api_key`], });

// textEmbedding.data[0].embedding => [0.1134245, ...] // n-dimensional embedding vector
// textEmbedding.data[0].index => 0
// textEmbedding.usage.totalTokens => 23
// textEmbedding.price.total => calculated price
// textEmbedding.elapsedMs => 564 // in milliseconds

Multi-Message Prompt, Streaming

import { promptStreaming, type PromptFinishReason, type Usage, type Price } from "cross-llm";

await promptStreaming(
  [
    {
      role: "user",
      content: "Let's have fun with JSON, shall we?",
    },
    {
      role: "assistant",
      content: "Yeah. Let's have fun with JSON.",
    },
    {
      role: "user",
      content: "Respond with JSON: { works: true }",
    },
  ],
  "openai",
  async (partialText: string, elapsedMs: number) => {
    // onChunk

    // stream-write to terminal
    process.stdout.write(partialText);
  },
  async (fullText: string, 
    elapsedMs: number,
    usage: Usage,
    finishReason: PromptFinishReason,
    price: Price) => {

    // onStop
    console.log("")
    console.log("parsed JSON", JSON.parse(fullText));
    console.log("finishReason", finishReason);
    console.log("elapsedMs", elapsedMs);
    console.log("usage", usage);
    console.log("price", price);
  },
  async (error: unknown, elapsedMs: number) => {
    // onError
    console.log("error", error, elapsedMs, 'ms elapsed');
  },
  {
    model: "gpt-4-turbo",
    temperature: 0.7,
    response_format: {
      type: "json_object",
    }
  },
  {
    // union of options passed down, mapped internally
    apiKey: import.meta.env[`openai_api_key`],
  },
);
  1. 📋 Copy & Paste -> enjoy! 🎉

🔥 Contributing

Simply create an issue or fork this repository, clone it and create a Pull Request (PR). I'm just implementing the features, AI model providers, cost model mappings that I need, but feel free to simply add your models or implement new AI providers. Every contribution is very welcome! 🤗

List/verify supported models

Please verify that your model/provider has been added correctly in ./src/models.

npm run print-models

Write and verify example code

Please add example code for when you implement a new AI provider in ./examples.

npm run example openai.ts

or

npm run example voyageai-embedding.ts

Write tests for new AI providers

Please write and run unit/integration/e2e tests using jest by creating ./src/*.spec.ts test suites:

npm run test

Build a release

Run the following command to update the ./dist files:

npm run build

Create a new NPM release build:

npm pack

Check the package contents for integrity.

npm publish

About

Universal library to integrate with LLMs. Supports Node.js, Deno, Bun, Service Workers, Web Extensions.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published