Skip to content

koponen-styra/opa

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

logo Open Policy Agent

Slack Status Build Status Go Report Card FOSSA Status

The Open Policy Agent (OPA) is an open source, general-purpose policy engine that enables unified, context-aware policy enforcement across the entire stack.

OPA is hosted by the Cloud Native Computing Foundation (CNCF) as a sandbox level project. If you are an organization that wants to help shape the evolution of technologies that are container-packaged, dynamically-scheduled and microservices-oriented, consider joining the CNCF. For details read the CNCF announcement.

Want to learn more about OPA?

Want to get OPA?

Want to integrate OPA?

  • See GoDoc to integrate OPA with services written in Go.
  • See REST API to integrate OPA with services written in other languages.

Want to contribute to OPA?

How does OPA work?

OPA gives you a high-level declarative language to author and enforce policies across your stack.

With OPA, you define rules that govern how your system should behave. These rules exist to answer questions like:

  • Can user X call operation Y on resource Z?
  • What clusters should workload W be deployed to?
  • What tags must be set on resource R before it's created?

You integrate services with OPA so that these kinds of policy decisions do not have to be hardcoded in your service. Services integrate with OPA by executing queries when policy decisions are needed.

When you query OPA for a policy decision, OPA evaluates the rules and data (which you give it) to produce an answer. The policy decision is sent back as the result of the query.

For example, in a simple API authorization use case:

  • You write rules that allow (or deny) access to your service APIs.
  • Your service queries OPA when it receives API requests.
  • OPA returns allow (or deny) decisions to your service.
  • Your service enforces the decisions by accepting or rejecting requests accordingly.

The examples below show different kinds of policies you can define with OPA as well as different kinds of queries your system can execute against OPA. The example queries are executed inside OPA's REPL which was built to make it easy to develop and test policies.

For concrete examples of how to integrate OPA with systems like Kubernetes, Terraform, Docker, SSH, and more, see openpolicyagent.org.

Example: API Authorization

This example shows how you can enforce access controls over salary information served by a simple HTTP API. In this example, users are allowed to access their own salary as well as the salary of anyone who reports to them.

allow {
    input.method = "GET"
    input.path = ["salary", id]
    input.user_id = id
}

allow {
    input.method = "GET"
    input.path = ["salary", id]
    managers = data.management_chain[id]
    id = managers[_]
}

Example Queries

Is someone allowed to access their own salary?

> input = {"method": "GET", "path": ["salary", "bob"], "user_id": "bob"}
> allow
true

Display the management chain for Bob:

> data.management_chain["bob"]
[
    "ken",
    "janet"
]

Is Alice allowed to access Bob's salary?

> input = {"method": "GET", "path": ["salary", "bob"], "user_id": "alice"}
> allow
false

Is Janet allowed to access Bob's salary?

> input = {"method": "GET", "path": ["salary", "alice"], "user_id": "janet"}
> allow
true

Example: App Placement

This example shows how you can enforce where apps are deployed inside a simple orchestrator. In this example, apps must be deployed onto clusters that satisfy PCI and jurisdiction requirements.

app_placement[cluster_id] {
    cluster = data.clusters[cluster_id]
    satisfies_jurisdiction(input.app, cluster)
    satisfies_pci(input.app, cluster)
}

satisfies_jurisdiction(app, cluster) {
    not app.tags["requires-eu"]
}

satisfies_jurisdiction(app, cluster) {
    app.tags["requires-eu"]
    startswith(cluster.region, "eu-")
}

satisfies_pci(app, cluster) {
    not app.tags["requires-pci-level"]
}

satisfies_pci(app, cluster) {
    level = to_number(app.tags["requires-pci-level"])
    level >= cluster.tags["pci-level"]
}

Example Queries

Where will this app be deployed?

> input = {"app": {"tags": {"requires-pci-level": "3", "requires-eu": "true"}}}
> app_placement
[
    "prod-eu"
]

Display clusters in EU region:

> startswith(data.clusters[cluster_id].region, "eu-")
+------------+
| cluster_id |
+------------+
| "prod-eu"  |
| "test-eu"  |
+------------+

Display all clusters:

> data.clusters[cluster_id]
+------------+------------------------------------------------+
| cluster_id |           data.clusters[cluster_id]            |
+------------+------------------------------------------------+
| "prod-eu"  | {"region":"eu-central","tags":{"pci-level":2}} |
| "prod-us"  | {"region":"us-east"}                           |
| "test-eu"  | {"region":"eu-west","tags":{"pci-level":4}}    |
| "test-us"  | {"region":"us-west"}                           |
+------------+------------------------------------------------+

Example: SSH Auditing

This example shows how you can audit who has SSH access to hosts within different clusters. We will assume that SSH access is granted via group access in LDAP.

import data.ldap
import data.clusters

ssh_access[[cluster_name, host_id, user_id]] {
    host_id = clusters[cluster_name].hosts[_]
    group_id = ldap.users[user_id].groups[_]
    group_id = clusters[cluster_name].groups[_]
}

prod_users = {user_id | ssh_access[["prod", _, user_id]]}

Example Queries

Who can access production hosts?

> prod_users
[
  "alice",
  "bob"
]

Display all LDAP users:

> data.ldap.users[user_id]
+-------------------------------+---------+
|   data.ldap.users[user_id]    | user_id |
+-------------------------------+---------+
| {"groups":["dev","platform"]} | "alice" |
| {"groups":["dev","ops"]}      | "bob"   |
| {"groups":["dev"]}            | "janet" |
+-------------------------------+---------+

Display all cluster/group pairs:

> data.clusters[cluster_id].groups[_] = group_id
+------------+------------+
| cluster_id |  group_id  |
+------------+------------+
| "test"     | "dev"      |
| "test"     | "ops"      |
| "prod"     | "ops"      |
| "prod"     | "platform" |
+------------+------------+

Does Janet have access to the test cluster?

> ssh_access[["test", _, "janet"]]
true

What are the addresses of the hosts in the test cluster that Janet can access?

> ssh_access[["test", host_id, "janet"]]; addr = data.hosts[host_id].addr
+------------+------------+
|    addr    |  host_id   |
+------------+------------+
| "10.0.0.1" | "host-abc" |
| "10.0.0.2" | "host-cde" |
| "10.0.0.3" | "host-efg" |
+------------+------------+

Further Reading

Presentations

  • How Netflix Is Solving Authorization Across Their Cloud @ CloudNativeCon US 2017: video, slides.
  • Policy-based Resource Placement in Kubernetes Federation @ LinuxCon Beijing 2017: slides, screencast.
  • Enforcing Bespoke Policies In Kubernetes @ KubeCon US 2017: video, slides.
  • Istio's Mixer: Policy Enforcement with Custom Adapters @ CloudNativeCon US 2017: video, slides.
  • The Open Policy Agent Project @ Netflix OSS Meetup Season 5 Episode 1 (2017): video, slides.

License

FOSSA Status

About

An open source, general-purpose policy engine.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 99.0%
  • Other 1.0%