Skip to content

kirstyellis/SMiRL_Code

This branch is 3 commits ahead of Neo-X/SMiRL_Code:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

841c773 · Jan 10, 2024

History

28 Commits
Feb 9, 2021
May 24, 2022
Apr 7, 2021
Jan 10, 2024
Apr 7, 2021
Sep 22, 2022
Jul 22, 2022
Sep 21, 2022
Feb 9, 2021
Sep 21, 2022
Sep 21, 2022
Feb 9, 2021
Feb 9, 2021
Nov 13, 2022
Sep 16, 2022
Feb 9, 2021
Jul 22, 2022

Repository files navigation

Bayesian Surprise

Repo for environments, gym wrappers, and scripts for the SMiRL project.

Requirements:

  • For distributing experiments.

doodad: https://github.com/montrealrobotics/doodad

  • RL library

rlkit: https://github.com/Neo-X/rlkit/tree/surprise

Build Instruction

conda create --name smirl_code python=3.7 pip
conda activate smirl_code
pip install -r requirements.txt
pip install -e ./
cd ../
git clone git@github.com:montrealrobotics/doodad.git
cd doodad
pip install -e ./
cd ../smirl_code

Then you will need copy the config.py file locally to launchers.config.py and update the paths in the file. You need to update BASE_CODE_DIR to the location you have saved SMiRL_Code. Also update LOCAL_LOG_DIR to the location you would like the logging data to be saved on your computer. You can look at the doodad for more details on this configuration.

Commands:

A basic examples.

python3 scripts/dqn_smirl.py --config=configs/tetris_SMiRL.json --run_mode=local --exp_name=test_smirl
python3 scripts/dqn_smirl.py --config=configs/Carnival_Small_SMiRL.json --run_mode=local --exp_name=test_smirl --training_processor_type=gpu

With docker locally

python3 scripts/dqn_smirl.py --config=configs/tetris_SMiRL.json --exp-name=test --run_mode=local_docker

###Run Vizdoom SMiRL experiments

python3 scripts/dqn_smirl.py --config=configs/VizDoom_TakeCover_Small.json --exp_name=vizdoom_small_test --run_mode=ssh --random_seeds=1 --meta_sim_threads=4 --log_comet=true --training_processor_type=gpu --tuningConfig=configs/GPU_indexes.json

python3 scripts/dqn_smirl.py --config=configs/VizDoom_DefendTheLine_Small.json --exp_name=vizdoom_DTL_small_smirl --run_mode=ssh --random_seeds=1 --meta_sim_threads=4 --log_comet=true --training_processor_type=gpu --tuningConfig=configs/GPU_indexes.json

python3 scripts/dqn_smirl.py --config=configs/VizDoom_DefendTheLine_Small_Bonus.json --exp_name=vizdoom_DTL_small_smirl_bonus --run_mode=ssh --ssh_host=newton1 --random_seeds=1 --meta_sim_threads=4 --log_comet=true --training_processor_type=gpu --tuningConfig=configs/GPU_indexes.json

Run Atari Experiments

python3 scripts/dqn_smirl.py --config=configs/Carnival_Small_SMiRL.json --exp_name=Atari_Carnival__small_smirl --run_mode=ssh --random_seeds=1 --meta_sim_threads=4 --log_comet=true --training_processor_type=gpu --tuningConfig=configs/GPU_indexes.json

python3 scripts/dqn_smirl.py --config=configs/Carnival_Small_SMiRL_Bonus.json --exp_name=Atari_Carnival_small_smirl_bonus --run_mode=ssh --ssh_host=newton1 --random_seeds=1 --meta_sim_threads=4 --log_comet=true --training_processor_type=gpu --tuningConfig=configs/GPU_indexes.json

python3 scripts/dqn_smirl.py --config=configs/IceHockey_Small_SMiRL.json --exp_name=Atari_IceHockey_small_smirl --run_mode=ssh --random_seeds=1 --meta_sim_threads=4 --log_comet=true --training_processor_type=gpu --tuningConfig=configs/GPU_indexes.json

python3 scripts/dqn_smirl.py --config=configs/RiverRaid_Small_SMiRL.json --exp_name=Atari_RiverRaid_small_smirl --run_mode=ssh --ssh_host=newton1 --random_seeds=1 --meta_sim_threads=4 --log_comet=true --training_processor_type=gpu --tuningConfig=configs/GPU_indexes.json

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.9%
  • Shell 2.7%
  • Dockerfile 1.5%
  • Other 0.9%