-
Notifications
You must be signed in to change notification settings - Fork 316
Add AlbertClassifier
#668
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
mattdangerw
merged 11 commits into
keras-team:master
from
kanpuriyanawab:alberta_classifier
Jan 31, 2023
Merged
Add AlbertClassifier
#668
Changes from 10 commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
2694ef7
init commit
kanpuriyanawab 9debbd8
added classifier, from_preset_method unimplemented yet
kanpuriyanawab 83b3626
running formatting, removing unused imports
kanpuriyanawab 7ac808f
Merge branch 'keras-team:master' into alberta_classifier
kanpuriyanawab 78e6c56
incorporating suggested changes
kanpuriyanawab 7aad8c2
Merge branch 'keras-team:master' into alberta_classifier
kanpuriyanawab de56091
formatting
kanpuriyanawab 4934876
updating docstrings
kanpuriyanawab 44b46bc
fixing errors due to merge
kanpuriyanawab d6634c1
fixing formattinf
kanpuriyanawab a2b92b4
Fix test names
mattdangerw File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,197 @@ | ||
| # Copyright 2022 The KerasNLP Authors | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """ALBERT classification model.""" | ||
|
|
||
| import copy | ||
|
|
||
| from tensorflow import keras | ||
|
|
||
| from keras_nlp.models.albert.albert_backbone import AlbertBackbone | ||
| from keras_nlp.models.albert.albert_backbone import albert_kernel_initializer | ||
| from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor | ||
| from keras_nlp.models.albert.albert_presets import backbone_presets | ||
| from keras_nlp.models.task import Task | ||
| from keras_nlp.utils.python_utils import classproperty | ||
|
|
||
|
|
||
| @keras.utils.register_keras_serializable(package="keras_nlp") | ||
| class AlbertClassifier(Task): | ||
| """An end-to-end ALBERT model for classification tasks | ||
|
|
||
| This model attaches a classification head to a `keras_nlp.model.AlbertBackbone` | ||
| backbone, mapping from the backbone outputs to logit output suitable for | ||
| a classification task. For usage of this model with pre-trained weights, see | ||
| the `from_preset()` method. | ||
|
|
||
| This model can optionally be configured with a `preprocessor` layer, in | ||
| which case it will automatically apply preprocessing to raw inputs during | ||
| `fit()`, `predict()`, and `evaluate()`. This is done by default when | ||
| creating the model with `from_preset()`. | ||
|
|
||
| Disclaimer: Pre-trained models are provided on an "as is" basis, without | ||
| warranties or conditions of any kind. | ||
|
|
||
| Args: | ||
| backbone: A `keras_nlp.models.AlertBackbone` instance. | ||
| num_classes: int. Number of classes to predict. | ||
| dropout: float. The dropout probability value, applied after the dense | ||
| layer. | ||
| preprocessor: A `keras_nlp.models.AlbertPreprocessor` or `None`. If | ||
| `None`, this model will not apply preprocessing, and inputs should | ||
| be preprocessed before calling the model. | ||
|
|
||
| Examples: | ||
|
|
||
| Example usage. | ||
| ```python | ||
| # Define the preprocessed inputs. | ||
| preprocessed_features = { | ||
| "token_ids": tf.ones(shape=(2, 12), dtype=tf.int64), | ||
| "segment_ids": tf.constant( | ||
| [[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12) | ||
| ), | ||
| "padding_mask": tf.constant( | ||
| [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12) | ||
| ), | ||
| } | ||
| labels = [0, 3] | ||
|
|
||
| # Randomly initialize a ALBERT backbone. | ||
| backbone = AlbertBackbone( | ||
| vocabulary_size=1000, | ||
| num_layers=2, | ||
| num_heads=2, | ||
| embedding_dim=8, | ||
| hidden_dim=64, | ||
| intermediate_dim=128, | ||
| max_sequence_length=128, | ||
| name="encoder", | ||
| ) | ||
|
|
||
| # Create a ALBERT classifier and fit your data. | ||
| classifier = keras_nlp.models.AlbertClassifier( | ||
| backbone, | ||
| num_classes=4, | ||
| preprocessor=None, | ||
| ) | ||
| classifier.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| ) | ||
| classifier.fit(x=preprocessed_features, y=labels, batch_size=2) | ||
|
|
||
| # Access backbone programatically (e.g., to change `trainable`) | ||
| classifier.backbone.trainable = False | ||
|
|
||
| Raw string inputs with customized preprocessing. | ||
| ```python | ||
| # Create a dataset with raw string features in an `(x, y)` format. | ||
| features = ["The quick brown fox jumped.", "I forgot my homework."] | ||
| labels = [0, 3] | ||
|
|
||
| # Use a shorter sequence length. | ||
| preprocessor = keras_nlp.models.AlbertPreprocessor.from_preset( | ||
| "albert_base_en_uncased", | ||
| sequence_length=128, | ||
| ) | ||
|
|
||
| # Create a AlbertClassifier and fit your data. | ||
| classifier = keras_nlp.models.AlbertClassifier.from_preset( | ||
| "albert_base_en_uncased", | ||
| num_classes=4, | ||
| preprocessor=preprocessor, | ||
| ) | ||
| classifier.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| ) | ||
| classifier.fit(x=features, y=labels, batch_size=2) | ||
| ``` | ||
|
|
||
| Preprocessed inputs. | ||
| ```python | ||
| # Create a dataset with preprocessed features in an `(x, y)` format. | ||
| preprocessed_features = { | ||
| "token_ids": tf.ones(shape=(2, 12), dtype=tf.int64), | ||
| "segment_ids": tf.constant( | ||
| [[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12) | ||
| ), | ||
| "padding_mask": tf.constant( | ||
| [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12) | ||
| ), | ||
| } | ||
| labels = [0, 3] | ||
|
|
||
| # Create a ALBERT classifier and fit your data. | ||
| classifier = keras_nlp.models.AlbertClassifier.from_preset( | ||
| "albert_base_en_uncased", | ||
| num_classes=4, | ||
| preprocessor=None, | ||
| ) | ||
| classifier.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| ) | ||
| classifier.fit(x=preprocessed_features, y=labels, batch_size=2) | ||
| ``` | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| backbone, | ||
| num_classes=2, | ||
| dropout=0.1, | ||
| preprocessor=None, | ||
| **kwargs, | ||
| ): | ||
| inputs = backbone.input | ||
| pooled = backbone(inputs)["pooled_output"] | ||
| pooled = keras.layers.Dropout(dropout)(pooled) | ||
| outputs = keras.layers.Dense( | ||
| num_classes, | ||
| kernel_initializer=albert_kernel_initializer(), | ||
| name="logits", | ||
| )(pooled) | ||
| # Instantiate using Functional API Model constructor | ||
| super().__init__( | ||
| inputs=inputs, | ||
| outputs=outputs, | ||
| include_preprocessing=preprocessor is not None, | ||
| **kwargs, | ||
| ) | ||
| # All references to `self` below this line | ||
| self._backbone = backbone | ||
| self._preprocessor = preprocessor | ||
| self.num_classes = num_classes | ||
| self.dropout = dropout | ||
|
|
||
| def get_config(self): | ||
| config = super().get_config() | ||
| config.update( | ||
| { | ||
| "num_classes": self.num_classes, | ||
| "dropout": self.dropout, | ||
| } | ||
| ) | ||
|
|
||
kanpuriyanawab marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| return config | ||
|
|
||
| @classproperty | ||
| def backbone_cls(cls): | ||
| return AlbertBackbone | ||
|
|
||
| @classproperty | ||
| def preprocessor_cls(cls): | ||
| return AlbertPreprocessor | ||
|
|
||
| @classproperty | ||
| def presets(cls): | ||
| return copy.deepcopy({**backbone_presets}) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,146 @@ | ||
| # Copyright 2022 The KerasNLP Authors | ||
kanpuriyanawab marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # https://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| """Tests for BERT classification model.""" | ||
|
|
||
| import io | ||
| import os | ||
|
|
||
| import sentencepiece | ||
| import tensorflow as tf | ||
| from absl.testing import parameterized | ||
| from tensorflow import keras | ||
|
|
||
| from keras_nlp.models.albert.albert_backbone import AlbertBackbone | ||
| from keras_nlp.models.albert.albert_classifier import AlbertClassifier | ||
| from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor | ||
| from keras_nlp.models.albert.albert_tokenizer import AlbertTokenizer | ||
|
|
||
|
|
||
| class AlbertClassifierTest(tf.test.TestCase, parameterized.TestCase): | ||
| def setUp(self): | ||
| self.backbone = AlbertBackbone( | ||
| vocabulary_size=1000, | ||
| num_layers=2, | ||
| num_heads=2, | ||
| embedding_dim=8, | ||
| hidden_dim=64, | ||
| intermediate_dim=128, | ||
| max_sequence_length=128, | ||
| name="encoder", | ||
| ) | ||
|
|
||
| bytes_io = io.BytesIO() | ||
| vocab_data = tf.data.Dataset.from_tensor_slices( | ||
| ["the quick brown fox", "the earth is round"] | ||
| ) | ||
| sentencepiece.SentencePieceTrainer.train( | ||
| sentence_iterator=vocab_data.as_numpy_iterator(), | ||
| model_writer=bytes_io, | ||
| vocab_size=10, | ||
| model_type="WORD", | ||
| pad_id=0, | ||
| unk_id=1, | ||
| bos_id=2, | ||
| eos_id=3, | ||
| pad_piece="<pad>", | ||
| unk_piece="<unk>", | ||
| bos_piece="[CLS]", | ||
| eos_piece="[SEP]", | ||
| ) | ||
| self.proto = bytes_io.getvalue() | ||
|
|
||
| tokenizer = AlbertTokenizer(proto=self.proto) | ||
|
|
||
| self.preprocessor = AlbertPreprocessor( | ||
| tokenizer=tokenizer, | ||
| sequence_length=8, | ||
| ) | ||
| self.classifier = AlbertClassifier( | ||
| self.backbone, | ||
| 4, | ||
| preprocessor=self.preprocessor, | ||
| ) | ||
| self.classifier_no_preprocessing = AlbertClassifier( | ||
| self.backbone, | ||
| 4, | ||
| preprocessor=None, | ||
| ) | ||
|
|
||
| self.raw_batch = tf.constant( | ||
| [ | ||
| "the quick brown fox.", | ||
| "the slow brown fox.", | ||
| "the smelly brown fox.", | ||
| "the old brown fox.", | ||
| ] | ||
| ) | ||
| self.preprocessed_batch = self.preprocessor(self.raw_batch) | ||
| self.raw_dataset = tf.data.Dataset.from_tensor_slices( | ||
| (self.raw_batch, tf.ones((4,))) | ||
| ).batch(2) | ||
| self.preprocessed_dataset = self.raw_dataset.map(self.preprocessor) | ||
|
|
||
| def test_valid_call_classifier(self): | ||
| self.classifier(self.preprocessed_batch) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_predict(self, jit_compile): | ||
| self.classifier.compile(jit_compile=jit_compile) | ||
| self.classifier.predict(self.raw_batch) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_predict_no_preprocessing(self, jit_compile): | ||
| self.classifier_no_preprocessing.compile(jit_compile=jit_compile) | ||
| self.classifier_no_preprocessing.predict(self.preprocessed_batch) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_fit(self, jit_compile): | ||
| self.classifier.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| jit_compile=jit_compile, | ||
| ) | ||
| self.classifier.fit(self.raw_dataset) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("jit_compile_false", False), ("jit_compile_true", True) | ||
| ) | ||
| def test_bert_classifier_fit_no_preprocessing(self, jit_compile): | ||
| self.classifier_no_preprocessing.compile( | ||
| loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
| jit_compile=jit_compile, | ||
| ) | ||
| self.classifier_no_preprocessing.fit(self.preprocessed_dataset) | ||
|
|
||
| @parameterized.named_parameters( | ||
| ("tf_format", "tf", "model"), | ||
| ("keras_format", "keras_v3", "model.keras"), | ||
| ) | ||
| def test_saved_model(self, save_format, filename): | ||
| model_output = self.classifier.predict(self.raw_batch) | ||
| save_path = os.path.join(self.get_temp_dir(), filename) | ||
| self.classifier.save(save_path, save_format=save_format) | ||
| restored_model = keras.models.load_model(save_path) | ||
|
|
||
| # Check we got the real object back. | ||
| self.assertIsInstance(restored_model, AlbertClassifier) | ||
|
|
||
| # Check that output matches. | ||
| restored_output = restored_model.predict(self.raw_batch) | ||
| self.assertAllClose(model_output, restored_output) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.