Skip to content
1 change: 1 addition & 0 deletions keras_nlp/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from keras_nlp.models.albert.albert_backbone import AlbertBackbone
from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor
from keras_nlp.models.albert.albert_tokenizer import AlbertTokenizer
from keras_nlp.models.bert.bert_backbone import BertBackbone
Expand Down
266 changes: 266 additions & 0 deletions keras_nlp/models/albert/albert_backbone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,266 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ALBERT backbone model."""

import tensorflow as tf
from tensorflow import keras

from keras_nlp.layers.position_embedding import PositionEmbedding
from keras_nlp.layers.transformer_encoder import TransformerEncoder
from keras_nlp.models.backbone import Backbone


def albert_kernel_initializer(stddev=0.02):
return keras.initializers.TruncatedNormal(stddev=stddev)


@keras.utils.register_keras_serializable(package="keras_nlp")
class AlbertBackbone(Backbone):
"""ALBERT encoder network.

This class implements a bi-directional Transformer-based encoder as
described in
["ALBERT: A Lite BERT for Self-supervised Learning of Language Representations"](https://arxiv.org/abs/1909.11942).
ALBERT is a more efficient variant of BERT, and uses parameter reduction
techniques such as cross-layer parameter sharing and factorized embedding
parameterization. This model class includes the embedding lookups and
transformer layers, but not the masked language model or sentence order
prediction heads.

The default constructor gives a fully customizable, randomly initialized
ALBERT encoder with any number of layers, heads, and embedding dimensions.
To load preset architectures and weights, use the `from_preset` constructor.

Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind.

Args:
vocabulary_size: int. The size of the token vocabulary.
num_layers: int, must be divisible by `num_groups`. The number of
"virtual" layers, i.e., the total number of times the input sequence
will be fed through the groups in one forward pass. The input will
be routed to the correct group based on the layer index.
num_heads: int. The number of attention heads for each transformer.
The hidden size must be divisible by the number of attention heads.
num_groups: int. Number of groups, with each group having
`num_inner_repetitions` number of `TransformerEncoder` layers.
num_inner_repetitions: int. Number of `TransformerEncoder` layers per
group.
embedding_dim: int. The size of the embeddings.
hidden_dim: int. The size of the transformer encoding and pooler layers.
intermediate_dim: int. The output dimension of the first Dense layer in
a two-layer feedforward network for each transformer.
dropout: float. Dropout probability for the Transformer encoder.
max_sequence_length: int. The maximum sequence length that this encoder
can consume. If None, `max_sequence_length` uses the value from
sequence length. This determines the variable shape for positional
embeddings.
num_segments: int. The number of types that the 'segment_ids' input can
take.

Examples:
```python
input_data = {
"token_ids": tf.ones(shape=(1, 12), dtype=tf.int64),
"segment_ids": tf.constant(
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12)
),
"padding_mask": tf.constant(
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12)
),
}

# Randomly initialized ALBERT encoder
model = keras_nlp.models.AlbertBackbone(
vocabulary_size=30000,
num_layers=12,
num_heads=12,
num_groups=1,
num_inner_repetitions=1,
embedding_dim=128,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=12,
)
output = model(input_data)
```
"""

def __init__(
self,
vocabulary_size,
num_layers,
num_heads,
num_groups,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's let's give num_groups and num_inner_repetitions defaults of 1. That will be a good way to indicate to users how this is used in practice (this means we should also drop them below the dim arguments.

num_inner_repetitions,
embedding_dim,
hidden_dim,
intermediate_dim,
dropout=0.0,
max_sequence_length=512,
num_segments=2,
**kwargs,
):

if num_layers % num_groups != 0:
raise ValueError(
"`num_layers` must be divisible by `num_groups`. Received "
f"`num_layers` = {num_layers}` and `num_groups` = {num_groups}."
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Style nits

                "`num_layers` must be divisible by `num_groups`. Received: "
                f"`num_layers={num_layers}` and `num_groups={num_groups}`."

)

# Index of classification token in the vocabulary
cls_token_index = 0
# Inputs
token_id_input = keras.Input(
shape=(None,), dtype="int32", name="token_ids"
)
segment_id_input = keras.Input(
shape=(None,), dtype="int32", name="segment_ids"
)
padding_mask = keras.Input(
shape=(None,), dtype="int32", name="padding_mask"
)

# Embed tokens, positions, and segment ids.
token_embedding_layer = keras.layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim,
embeddings_initializer=albert_kernel_initializer(),
name="token_embedding",
)
token_embedding = token_embedding_layer(token_id_input)
position_embedding = PositionEmbedding(
initializer=albert_kernel_initializer(),
sequence_length=max_sequence_length,
name="position_embedding",
)(token_embedding)
segment_embedding = keras.layers.Embedding(
input_dim=num_segments,
output_dim=embedding_dim,
embeddings_initializer=albert_kernel_initializer(),
name="segment_embedding",
)(segment_id_input)

# Sum, normalize and apply dropout to embeddings.
x = keras.layers.Add()(
(token_embedding, position_embedding, segment_embedding)
)
x = keras.layers.LayerNormalization(
name="embeddings_layer_norm",
axis=-1,
epsilon=1e-12,
dtype=tf.float32,
)(x)
x = keras.layers.Dropout(
dropout,
name="embeddings_dropout",
)(x)

# Project the embedding to `hidden_dim`.
x = keras.layers.Dense(
hidden_dim,
kernel_initializer=albert_kernel_initializer(),
name="embedding_projection",
)(x)

def get_group_layer(group_idx):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would this be more readable if we extract as a keras.Layer at the top of this file? Otherwise we have a funky closure in the middle of the forward pass.

Copy link
Member

@mattdangerw mattdangerw Jan 7, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah, this may be my bad, I recommended this (it's a style used by cv and keras applications somewhat frequently). Ideally, we could just use a keras.Sequential here, which would be super readable. But there is no way to pass a padding mask to a sequential.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@jbischof, yeah, that's what I'd initially done in the first few commits. But we want to avoid making extra layers whenever possible, discussed this with @mattdangerw. And secondly, we will have to pass a bunch of args to the layer in the for loop, which is something we can avoid.

This snippet, which is succinct and small:

        for group_idx in range(num_groups):
            # Define the group. A group in ALBERT terminology is any number of
            # repeated attention and FFN blocks.
            group_layer = get_group_layer(group_idx)

            # Assume num_layers = 8, num_groups = 5. Then, the order of group
            # calls will be 0, 0, 1, 1, 2, 3, 3, 4.
            while int(layer_idx / num_calls_per_group) == group_idx:
                x = group_layer(x, padding_mask=padding_mask)
                layer_idx += 1

, will become this:

        for group_idx in range(num_groups):
            # Define the group. A group in ALBERT terminology is any number of
            # repeated attention and FFN blocks.
            group_layer = GroupLayer(
                group_idx, 
                num_heads=num_heads,
                intermediate_dim=intermediate_dim,
                dropout=dropout,
                ...
            )

            # Assume num_layers = 8, num_groups = 5. Then, the order of group
            # calls will be 0, 0, 1, 1, 2, 3, 3, 4.
            while int(layer_idx / num_calls_per_group) == group_idx:
                x = group_layer(x, padding_mask=padding_mask)
                layer_idx += 1

, or something similar, anyway.

On second thoughts, doesn't look too bad, but yeah, the first point still stands.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

OK, so be it

Copy link
Member

@mattdangerw mattdangerw Jan 7, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is this, which has the advantage of showing up in a summary/plot_model call as a single entity.

def get_group_layer(group_idx):
    """Stack `num_inner_repetitions` encoder block as a single layer."""
    outputs = inputs = keras.Input(shape=(None, hidden_dim))
    for _ in range(num_inner_repetitions):
        outputs = TransformerEncoder(
            num_heads=num_heads,
            intermediate_dim=intermediate_dim,
            activation=lambda x: keras.activations.gelu(
                x, approximate=True
            ),
            dropout=dropout,
            kernel_initializer=albert_kernel_initializer(),
        )(outputs, padding_mask=padding_mask)
    return keras.Model(
        (inputs, padding_mask), (outputs), name=f"group_{group_idx}",
    )

It needs to be called as a tuple group_layer((x, padding_mask)).

I'm also totally happy to just quit and remove num_groups and num_inner_repetitions entirely if we want to 😈

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm also totally happy to just quit and remove num_groups and num_inner_repetitions entirely if we want to 😈

image

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can do the functional approach! Currently, this is how model.summary() looks. I feel this isn't too bad, especially because the arguments are sort of confusing. This helps clarify which arg does what, especially num_groups and num_inner_repetitions.

Model: "albert_backbone"
__________________________________________________________________________________________________
 Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================
 token_ids (InputLayer)         [(None, None)]       0           []                               
                                                                                                  
 token_embedding (Embedding)    (None, None, 128)    3840000     ['token_ids[0][0]']              
                                                                                                  
 segment_ids (InputLayer)       [(None, None)]       0           []                               
                                                                                                  
 position_embedding (PositionEm  (None, None, 128)   65536       ['token_embedding[0][0]']        
 bedding)                                                                                         
                                                                                                  
 segment_embedding (Embedding)  (None, None, 128)    256         ['segment_ids[0][0]']            
                                                                                                  
 add (Add)                      (None, None, 128)    0           ['token_embedding[0][0]',        
                                                                  'position_embedding[0][0]',     
                                                                  'segment_embedding[0][0]']      
                                                                                                  
 embeddings_layer_norm (LayerNo  (None, None, 128)   256         ['add[0][0]']                    
 rmalization)                                                                                     
                                                                                                  
 embeddings_dropout (Dropout)   (None, None, 128)    0           ['embeddings_layer_norm[0][0]']  
                                                                                                  
 embedding_projection (Dense)   (None, None, 768)    99072       ['embeddings_dropout[0][0]']     
                                                                                                  
 padding_mask (InputLayer)      [(None, None)]       0           []                               
                                                                                                  
 group_0_transformer_layer_0 (T  (None, None, 768)   7087872     ['embedding_projection[0][0]',   
 ransformerEncoder)                                               'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[0][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[1][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[2][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[3][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[4][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[5][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[6][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[7][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[8][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[9][
                                                                 0]',                             
                                                                  'padding_mask[0][0]',           
                                                                  'group_0_transformer_layer_0[10]
                                                                 [0]',                            
                                                                  'padding_mask[0][0]']           
                                                                                                  
 tf.__operators__.getitem (Slic  (None, 768)         0           ['group_0_transformer_layer_0[11]
 ingOpLambda)                                                    [0]']                            
                                                                                                  
 pooled_dense (Dense)           (None, 768)          590592      ['tf.__operators__.getitem[0][0]'
                                                                 ]                                
                                                                                                  
==================================================================================================
Total params: 11,683,584
Trainable params: 11,683,584
Non-trainable params: 0
__________________________________________________________________________________________________

"""Defines a group `num_inner_repetitions` transformer layers and
returns the callable.
"""
transformer_layers = [
TransformerEncoder(
num_heads=num_heads,
intermediate_dim=intermediate_dim,
activation=lambda x: keras.activations.gelu(
x, approximate=True
),
dropout=dropout,
kernel_initializer=albert_kernel_initializer(),
name=f"group_{group_idx}_transformer_layer_{inner_repetition_idx}",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's name this:

group_{group_idx}_inner_layer_{inner_repetition_idx}

We want the link between num_inner_repetitions and the "inner" index here clear when viewing a model summary.

)
for inner_repetition_idx in range(num_inner_repetitions)
]

def call(x, padding_mask):
for transformer_layer in transformer_layers:
x = transformer_layer(x, padding_mask=padding_mask)
return x

return call

num_calls_per_group = num_layers // num_groups
for group_idx in range(num_groups):
# Define the group. A group in ALBERT terminology is any number of
# repeated attention and FFN blocks.
group_layer = get_group_layer(group_idx)

# Assume num_layers = 8, num_groups = 4. Then, the order of group
# calls will be 0, 0, 1, 1, 2, 2, 3, 3.
for call in range(num_calls_per_group):
x = group_layer(x, padding_mask=padding_mask)

# Construct the two ALBERT outputs. The pooled output is a dense layer on
# top of the [CLS] token.
sequence_output = x
pooled_output = keras.layers.Dense(
hidden_dim,
kernel_initializer=albert_kernel_initializer(),
activation="tanh",
name="pooled_dense",
)(x[:, cls_token_index, :])

# Instantiate using Functional API Model constructor
super().__init__(
inputs={
"token_ids": token_id_input,
"segment_ids": segment_id_input,
"padding_mask": padding_mask,
},
outputs={
"sequence_output": sequence_output,
"pooled_output": pooled_output,
},
**kwargs,
)
# All references to `self` below this line
self.vocabulary_size = vocabulary_size
self.num_layers = num_layers
self.num_heads = num_heads
self.num_groups = num_groups
self.num_inner_repetitions = num_inner_repetitions
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.intermediate_dim = intermediate_dim
self.dropout = dropout
self.max_sequence_length = max_sequence_length
self.num_segments = num_segments
self.cls_token_index = cls_token_index

def get_config(self):
return {
"vocabulary_size": self.vocabulary_size,
"num_layers": self.num_layers,
"num_heads": self.num_heads,
"num_groups": self.num_groups,
"num_inner_repetitions": self.num_inner_repetitions,
"embedding_dim": self.embedding_dim,
"hidden_dim": self.hidden_dim,
"intermediate_dim": self.intermediate_dim,
"dropout": self.dropout,
"max_sequence_length": self.max_sequence_length,
"num_segments": self.num_segments,
"name": self.name,
"trainable": self.trainable,
}
120 changes: 120 additions & 0 deletions keras_nlp/models/albert/albert_backbone_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test for ALBERT backbone model."""

import os

import tensorflow as tf
from absl.testing import parameterized
from tensorflow import keras

from keras_nlp.models.albert.albert_backbone import AlbertBackbone


class AlbertBackboneTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
self.model = AlbertBackbone(
vocabulary_size=1000,
num_layers=2,
num_heads=2,
num_groups=1,
num_inner_repetitions=1,
embedding_dim=16,
hidden_dim=64,
intermediate_dim=128,
max_sequence_length=128,
)
self.batch_size = 8
self.input_batch = {
"token_ids": tf.ones(
(self.batch_size, self.model.max_sequence_length), dtype="int32"
),
"segment_ids": tf.ones(
(self.batch_size, self.model.max_sequence_length), dtype="int32"
),
"padding_mask": tf.ones(
(self.batch_size, self.model.max_sequence_length), dtype="int32"
),
}

self.input_dataset = tf.data.Dataset.from_tensor_slices(
self.input_batch
).batch(2)

def test_valid_call_albert(self):
self.model(self.input_batch)

# Check default name passed through
self.assertRegexpMatches(self.model.name, "albert_backbone")

def test_variable_sequence_length_call_albert(self):
for seq_length in (25, 50, 75):
input_data = {
"token_ids": tf.ones(
(self.batch_size, seq_length), dtype="int32"
),
"segment_ids": tf.ones(
(self.batch_size, seq_length), dtype="int32"
),
"padding_mask": tf.ones(
(self.batch_size, seq_length), dtype="int32"
),
}
self.model(input_data)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
def test_compile(self, jit_compile):
self.model.compile(jit_compile=jit_compile)
self.model.predict(self.input_batch)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
def test_compile_batched_ds(self, jit_compile):
self.model.compile(jit_compile=jit_compile)
self.model.predict(self.input_dataset)

def test_error_for_invalid_num_groups(self):
with self.assertRaises(ValueError):
self.model = AlbertBackbone(
vocabulary_size=1000,
num_layers=3,
num_heads=2,
num_groups=2,
num_inner_repetitions=1,
embedding_dim=16,
hidden_dim=64,
intermediate_dim=128,
)

@parameterized.named_parameters(
("tf_format", "tf", "model"),
("keras_format", "keras_v3", "model.keras"),
)
def test_saved_model(self, save_format, filename):
model_output = self.model(self.input_batch)
save_path = os.path.join(self.get_temp_dir(), filename)
self.model.save(save_path, save_format=save_format)
restored_model = keras.models.load_model(save_path)

# Check we got the real object back.
self.assertIsInstance(restored_model, AlbertBackbone)

# Check that output matches.
restored_output = restored_model(self.input_batch)
self.assertAllClose(
model_output["pooled_output"], restored_output["pooled_output"]
)