-
Notifications
You must be signed in to change notification settings - Fork 306
Open
Labels
type:BugSomething isn't workingSomething isn't working
Description
T5 backbone presets test are failing for Keras 2, but pass for Keras 3 (all backends).
This test is now disabled for Keras 2 so the builds are green - #1362
_____________________ T5BackboneTest.test_smallest_preset ______________________
self =
@pytest.mark.large
def test_smallest_preset(self):
> self.run_preset_test(
cls=T5Backbone,
preset="t5_small_multi",
input_data=self.input_data,
expected_output_shape={
"encoder_sequence_output": (2, 3, 512),
"decoder_sequence_output": (2, 3, 512),
},
expected_partial_output={
"encoder_sequence_output": ops.array(
[-0.0034, 0.0293, -0.0827, -0.1076]
),
"decoder_sequence_output": ops.array(
[0.0097, 0.3576, -0.1508, 0.0150]
),
},
)
keras_nlp/models/t5/t5_backbone_test.py:59:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
keras_nlp/tests/test_case.py:400: in run_preset_test
instance = cls.from_preset(preset, **init_kwargs)
keras_nlp/models/backbone.py:135: in from_preset
return super(cls, calling_cls).from_preset(*args, **kwargs)
keras_nlp/models/backbone.py:123: in from_preset
model.load_weights(weights)
/tmpfs/venv/lib/python3.9/site-packages/keras/src/utils/traceback_utils.py:61: in error_handler
return fn(*args, **kwargs)
/tmpfs/venv/lib/python3.9/site-packages/keras/src/engine/training.py:3235: in load_weights
return saving_api.load_weights(
/tmpfs/venv/lib/python3.9/site-packages/keras/src/saving/saving_api.py:301: in load_weights
saving_lib.load_weights_only(
/tmpfs/venv/lib/python3.9/site-packages/keras/src/saving/saving_lib.py:333: in load_weights_only
_load_state(
/tmpfs/venv/lib/python3.9/site-packages/keras/src/saving/saving_lib.py:457: in _load_state
_load_state(
/tmpfs/venv/lib/python3.9/site-packages/keras/src/saving/saving_lib.py:435: in _load_state
trackable.load_own_variables(weights_store.get(inner_path))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self =
store = {}
def load_own_variables(self, store):
if not self.built:
self.build()
> self.embeddings.assign(store["0"])
E KeyError: '0'
keras_nlp/layers/modeling/reversible_embedding.py:144: KeyError
Metadata
Metadata
Assignees
Labels
type:BugSomething isn't workingSomething isn't working