Skip to content
Merged

Pr 3056 #3149

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions egs/tedlium/s5_r3/local/chain/compare_wer_general.sh
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ for n in 0 1 2 3; do
for x in $*; do
set_names $x # sets $dirname and $epoch_infix
decode_names=(dev${epoch_infix} dev${epoch_infix}_rescore test${epoch_infix} test${epoch_infix}_rescore)
wer=$(grep Sum $dirname/decode_${decode_names[$n]}/score*/*ys | utils/best_wer.sh | awk '{print $2}')
wer=$(grep WER $dirname/decode_${decode_names[$n]}/wer_* | utils/best_wer.sh | awk '{print $2}')
printf "% 10s" $wer
done
echo
Expand All @@ -64,7 +64,7 @@ for n in 0 1 2 3; do
for x in $*; do
set_names $x # sets $dirname and $epoch_infix
decode_names=(dev${epoch_infix} dev${epoch_infix}_rescore test${epoch_infix} test${epoch_infix}_rescore)
wer=$(grep Sum $dirname/decode_looped_${decode_names[$n]}/score*/*ys | utils/best_wer.sh | awk '{print $2}')
wer=$(grep WER $dirname/decode_looped_${decode_names[$n]}/wer_* | utils/best_wer.sh | awk '{print $2}')
printf "% 10s" $wer
done
echo
Expand Down
1 change: 1 addition & 0 deletions egs/tedlium/s5_r3/local/chain/run_tdnn.sh
1 change: 0 additions & 1 deletion egs/tedlium/s5_r3/local/chain/run_tdnnf.sh

This file was deleted.

249 changes: 249 additions & 0 deletions egs/tedlium/s5_r3/local/chain/tuning/run_tdnn_1c.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
#!/bin/bash

# This is copied from tedlium/s5_r2/local/chain/tuning/run_tdnn_1g.sh setup, and it replaces the current run_tdnn_1b.sh script.

# local/chain/compare_wer_general.sh exp/chain_cleaned/tdnnf_1b exp/chain_cleaned/tdnnf_1c
# System tdnnf_1b tdnnf_1c
# WER on dev(orig) 8.15 8.03
# WER on dev(rescored) 7.69 7.44
# WER on test(orig) 8.19 8.30
# WER on test(rescored) 7.77 7.85
# Final train prob -0.0692 -0.0669
# Final valid prob -0.0954 -0.0838
# Final train prob (xent) -0.9369 -0.9596
# Final valid prob (xent) -1.0730 -1.0780
# Num-params 25741728 9463968


# steps/info/chain_dir_info.pl exp/chain_cleaned/tdnnf_1b/
# exp/chain_cleaned/tdnnf_1b/: num-iters=945 nj=2..6 num-params=25.7M dim=40+100->3664 combine=-0.074->-0.071 (over 6) xent:train/valid[628,944,final]=(-1.07,-0.959,-0.937/-1.20,-1.10,-1.07) logprob:train/valid[628,944,final]=(-0.088,-0.070,-0.069/-0.111,-0.098,-0.095)
# steps/info/chain_dir_info.pl exp/chain_cleaned/tdnnf_1c
# exp/chain_cleaned/tdnn1c/: num-iters=228 nj=3..12 num-params=9.5M dim=40+100->3664 combine=-0.068->-0.068 (over 4) xent:train/valid[151,227,final]=(-1.15,-0.967,-0.960/-1.25,-1.09,-1.08) logprob:train/valid[151,227,final]=(-0.090,-0.068,-0.067/-0.102,-0.05,-0.084)

## how you run this (note: this assumes that the run_tdnn.sh soft link points here;
## otherwise call it directly in its location).
# by default, with cleanup:
# local/chain/run_tdnn.sh

# without cleanup:
# local/chain/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix "" &

set -e -o pipefail

# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
nj=15
decode_nj=15
xent_regularize=0.1
dropout_schedule='0,0@0.20,0.5@0.50,0'

train_set=train_cleaned
gmm=tri3_cleaned # the gmm for the target data
num_threads_ubm=1
nnet3_affix=_cleaned # cleanup affix for nnet3 and chain dirs, e.g. _cleaned

# The rest are configs specific to this script. Most of the parameters
# are just hardcoded at this level, in the commands below.
train_stage=-10
tree_affix= # affix for tree directory, e.g. "a" or "b", in case we change the configuration.
tdnn_affix=1c #affix for TDNN directory, e.g. "a" or "b", in case we change the configuration.
common_egs_dir= # you can set this to use previously dumped egs.
remove_egs=true

# End configuration section.
echo "$0 $@" # Print the command line for logging

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh


if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

local/nnet3/run_ivector_common.sh --stage $stage \
--nj $nj \
--train-set $train_set \
--gmm $gmm \
--num-threads-ubm $num_threads_ubm \
--nnet3-affix "$nnet3_affix"


gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
tree_dir=exp/chain${nnet3_affix}/tree_bi${tree_affix}
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${tdnn_affix}_sp
train_data_dir=data/${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires


for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done

if [ $stage -le 14 ]; then
echo "$0: creating lang directory with one state per phone."
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
if [ -d data/lang_chain ]; then
if [ data/lang_chain/L.fst -nt data/lang/L.fst ]; then
echo "$0: data/lang_chain already exists, not overwriting it; continuing"
else
echo "$0: data/lang_chain already exists and seems to be older than data/lang..."
echo " ... not sure what to do. Exiting."
exit 1;
fi
else
cp -r data/lang data/lang_chain
silphonelist=$(cat data/lang_chain/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat data/lang_chain/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >data/lang_chain/topo
fi
fi

if [ $stage -le 15 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \
data/lang $gmm_dir $lat_dir
rm $lat_dir/fsts.*.gz # save space
fi

if [ $stage -le 16 ]; then
# Build a tree using our new topology. We know we have alignments for the
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
# those.
if [ -f $tree_dir/final.mdl ]; then
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
exit 1;
fi
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 4000 ${lores_train_data_dir} data/lang_chain $ali_dir $tree_dir
fi

if [ $stage -le 17 ]; then
mkdir -p $dir

echo "$0: creating neural net configs using the xconfig parser";

num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)
affine_opts="l2-regularize=0.008 dropout-proportion=0.0 dropout-per-dim-continuous=true"
tdnnf_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.66"
linear_opts="l2-regularize=0.008 orthonormal-constraint=-1.0"
prefinal_opts="l2-regularize=0.008"
output_opts="l2-regularize=0.002"

mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input

# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat

# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1024
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
linear-component name=prefinal-l dim=256 $linear_opts

prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts

prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/

fi

if [ $stage -le 18 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/ami-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi

steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.0 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.dropout-schedule $dropout_schedule \
--trainer.add-option="--optimization.memory-compression-level=2" \
--egs.dir "$common_egs_dir" \
--egs.opts "--frames-overlap-per-eg 0 --constrained false" \
--egs.chunk-width 150,110,100 \
--trainer.num-chunk-per-minibatch 64 \
--trainer.frames-per-iter 5000000 \
--trainer.num-epochs 6 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 12 \
--trainer.optimization.initial-effective-lrate 0.00025 \
--trainer.optimization.final-effective-lrate 0.000025 \
--trainer.max-param-change 2.0 \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $tree_dir \
--lat-dir $lat_dir \
--dir $dir
fi



if [ $stage -le 19 ]; then
# Note: it might appear that this data/lang_chain directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
fi

if [ $stage -le 20 ]; then
rm $dir/.error 2>/dev/null || true
for dset in dev test; do
(
steps/nnet3/decode.sh --num-threads 4 --nj $decode_nj --cmd "$decode_cmd" \
--acwt 1.0 --post-decode-acwt 10.0 \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \
--scoring-opts "--min-lmwt 5 " \
$dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1;
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \
data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in decoding"
exit 1
fi
fi
exit 0