-
Notifications
You must be signed in to change notification settings - Fork 5.4k
Made changes to the augmentation script to make it work for ASR and speaker ID #3119
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 9 commits
5849164
a30997b
7b0ba4a
e92fb09
d5e9db8
2c3ef53
fc0514c
f02b8ab
b7551a0
2237b6a
986aebe
a923452
f98de0e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
#!/bin/bash | ||
|
||
# This recipe does multi-style training of TDNN model | ||
|
||
set -e | ||
|
||
# configs for 'chain' | ||
stage=0 | ||
train_stage=-10 | ||
get_egs_stage=-10 | ||
num_epochs=3 | ||
|
||
# Augmentation options | ||
augmentation_list="reverb:babble:music:noise:clean" | ||
use_ivectors=true | ||
|
||
affix=1a | ||
suffix="_ms" | ||
if [ -e data/rt03 ]; then maybe_rt03=rt03; else maybe_rt03= ; fi | ||
|
||
decode_iter= | ||
decode_nj=50 | ||
|
||
# training options | ||
frames_per_eg=150,110,100 | ||
remove_egs=false | ||
common_egs_dir= | ||
xent_regularize=0.1 | ||
dropout_schedule='0,[email protected],[email protected],0' | ||
|
||
test_online_decoding=false # if true, it will run the last decoding stage. | ||
|
||
# End configuration section. | ||
echo "$0 $@" # Print the command line for logging | ||
|
||
. ./cmd.sh | ||
. ./path.sh | ||
. ./utils/parse_options.sh | ||
|
||
dir=exp/chain/tdnn${affix}${suffix} | ||
|
||
if ! cuda-compiled; then | ||
cat <<EOF && exit 1 | ||
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA | ||
If you want to use GPUs (and have them), go to src/, and configure and make on a machine | ||
where "nvcc" is installed. | ||
EOF | ||
fi | ||
|
||
# The iVector-extraction and feature-dumping parts are the same as the standard | ||
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already | ||
# run those things. | ||
|
||
clean_set=train_nodup | ||
clean_ali=tri4_ali_nodup | ||
train_set=$clean_set$suffix # Will be prepared by the script local/nnet3/prepare_multistyle_data.sh | ||
ali_dir=$clean_ali$suffix | ||
treedir=exp/chain/tri5_7d_tree$suffix | ||
lang=data/lang_chain_2y | ||
|
||
|
||
# if we are using the speed-perturbed data we need to generate | ||
# alignments for it. | ||
local/nnet3/prepare_multistyle_data.sh --stage $stage \ | ||
--augmentation-list "$augmentation_list" \ | ||
--use-ivectors "$use_ivectors" \ | ||
--train-set $clean_set --clean-ali $clean_ali || exit 1; | ||
|
||
if [ $stage -le 11 ]; then | ||
# Get the alignments as lattices (gives the LF-MMI training more freedom). | ||
# use the same num-jobs as the alignments | ||
nj=$(cat exp/tri4_ali_nodup$suffix/num_jobs) || exit 1; | ||
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/${clean_set} \ | ||
data/lang exp/tri4 exp/tri4_lats_nodup${suffix}_clean | ||
rm exp/tri4_lats_nodup${suffix}_clean/fsts.*.gz # save space | ||
local/copy_lat_dir.sh --nj $nj --cmd "$train_cmd" \ | ||
data/${train_set} exp/tri4_lats_nodup${suffix}_clean exp/tri4_lats_nodup${suffix} || exit 1; | ||
fi | ||
|
||
if [ $stage -le 12 ]; then | ||
# Create a version of the lang/ directory that has one state per phone in the | ||
# topo file. [note, it really has two states.. the first one is only repeated | ||
# once, the second one has zero or more repeats.] | ||
rm -rf $lang | ||
cp -r data/lang $lang | ||
silphonelist=$(cat $lang/phones/silence.csl) || exit 1; | ||
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; | ||
# Use our special topology... note that later on may have to tune this | ||
# topology. | ||
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo | ||
fi | ||
|
||
if [ $stage -le 13 ]; then | ||
# Build a tree using our new topology. This is the critically different | ||
# step compared with other recipes. | ||
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ | ||
--context-opts "--context-width=2 --central-position=1" \ | ||
--cmd "$train_cmd" 7000 data/$train_set $lang exp/$ali_dir $treedir | ||
fi | ||
|
||
if [ $stage -le 14 ]; then | ||
echo "$0: creating neural net configs using the xconfig parser"; | ||
|
||
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') | ||
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python) | ||
affine_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim=true dropout-per-dim-continuous=true" | ||
tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66" | ||
linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0" | ||
prefinal_opts="l2-regularize=0.01" | ||
output_opts="l2-regularize=0.002" | ||
|
||
mkdir -p $dir/configs | ||
|
||
cat <<EOF > $dir/configs/network.xconfig | ||
input dim=100 name=ivector | ||
input dim=40 name=input | ||
|
||
# please note that it is important to have input layer with the name=input | ||
# as the layer immediately preceding the fixed-affine-layer to enable | ||
# the use of short notation for the descriptor | ||
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat | ||
|
||
# the first splicing is moved before the lda layer, so no splicing here | ||
relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1536 | ||
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 | ||
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 | ||
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=1 | ||
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=0 | ||
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf14 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
tdnnf-layer name=tdnnf15 $tdnnf_opts dim=1536 bottleneck-dim=160 time-stride=3 | ||
linear-component name=prefinal-l dim=256 $linear_opts | ||
|
||
prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 | ||
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts | ||
|
||
prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1536 small-dim=256 | ||
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts | ||
EOF | ||
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ | ||
fi | ||
|
||
if [ $stage -le 15 ]; then | ||
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then | ||
utils/create_split_dir.pl \ | ||
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage | ||
fi | ||
|
||
steps/nnet3/chain/train.py --stage $train_stage \ | ||
--cmd "$train_cmd" \ | ||
--feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ | ||
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \ | ||
--chain.xent-regularize $xent_regularize \ | ||
--chain.leaky-hmm-coefficient 0.1 \ | ||
--chain.l2-regularize 0.0 \ | ||
--chain.apply-deriv-weights false \ | ||
--chain.lm-opts="--num-extra-lm-states=2000" \ | ||
--trainer.dropout-schedule $dropout_schedule \ | ||
--trainer.add-option="--optimization.memory-compression-level=2" \ | ||
--egs.dir "$common_egs_dir" \ | ||
--egs.stage $get_egs_stage \ | ||
--egs.opts "--frames-overlap-per-eg 0 --constrained false" \ | ||
--egs.chunk-width $frames_per_eg \ | ||
--trainer.num-chunk-per-minibatch 64 \ | ||
--trainer.frames-per-iter 1500000 \ | ||
--trainer.num-epochs $num_epochs \ | ||
--trainer.optimization.num-jobs-initial 3 \ | ||
--trainer.optimization.num-jobs-final 16 \ | ||
--trainer.optimization.initial-effective-lrate 0.00025 \ | ||
--trainer.optimization.final-effective-lrate 0.000025 \ | ||
--trainer.max-param-change 2.0 \ | ||
--cleanup.remove-egs $remove_egs \ | ||
--feat-dir data/${train_set}_hires \ | ||
--tree-dir $treedir \ | ||
--lat-dir exp/tri4_lats_nodup$suffix \ | ||
--dir $dir || exit 1; | ||
|
||
fi | ||
|
||
if [ $stage -le 16 ]; then | ||
# Note: it might appear that this $lang directory is mismatched, and it is as | ||
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from | ||
# the lang directory. | ||
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg | ||
fi | ||
|
||
|
||
graph_dir=$dir/graph_sw1_tg | ||
iter_opts= | ||
if [ ! -z $decode_iter ]; then | ||
iter_opts=" --iter $decode_iter " | ||
fi | ||
if [ $stage -le 17 ]; then | ||
rm $dir/.error 2>/dev/null || true | ||
for decode_set in train_dev eval2000 $maybe_rt03; do | ||
( | ||
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ | ||
--nj $decode_nj --cmd "$decode_cmd" $iter_opts \ | ||
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \ | ||
$graph_dir data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1; | ||
fi | ||
) || touch $dir/.error & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in decoding" | ||
exit 1 | ||
fi | ||
fi | ||
|
||
if $test_online_decoding && [ $stage -le 16 ]; then | ||
# note: if the features change (e.g. you add pitch features), you will have to | ||
# change the options of the following command line. | ||
steps/online/nnet3/prepare_online_decoding.sh \ | ||
--mfcc-config conf/mfcc_hires.conf \ | ||
$lang exp/nnet3/extractor $dir ${dir}_online | ||
|
||
rm $dir/.error 2>/dev/null || true | ||
for decode_set in train_dev eval2000 $maybe_rt03; do | ||
( | ||
# note: we just give it "$decode_set" as it only uses the wav.scp, the | ||
# feature type does not matter. | ||
|
||
steps/online/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" \ | ||
--acwt 1.0 --post-decode-acwt 10.0 \ | ||
$graph_dir data/${decode_set}_hires \ | ||
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1; | ||
fi | ||
) || touch $dir/.error & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in decoding" | ||
exit 1 | ||
fi | ||
fi | ||
|
||
|
||
exit 0; |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
multi_style/tuning/run_tdnn_1a.sh |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
#!/bin/bash | ||
|
||
noise_list="reverb1:babble:music:noise" | ||
max_jobs_run=50 | ||
nj=100 | ||
cmd=queue.pl | ||
write_binary=true | ||
|
||
. ./path.sh | ||
. utils/parse_options.sh | ||
|
||
if [ $# -ne 3 ]; then | ||
echo "Usage: $0 <out-data> <src-ali-dir> <out-ali-dir>" | ||
exit 1 | ||
fi | ||
|
||
data=$1 | ||
src_dir=$2 | ||
dir=$3 | ||
|
||
mkdir -p $dir | ||
|
||
num_jobs=$(cat $src_dir/num_jobs) | ||
|
||
rm -f $dir/ali_tmp.*.{ark,scp} 2>/dev/null | ||
|
||
# Copy the alignments temporarily | ||
echo "creating temporary alignments in $dir" | ||
$cmd --max-jobs-run $max_jobs_run JOB=1:$num_jobs $dir/log/copy_ali_temp.JOB.log \ | ||
copy-int-vector --binary=$write_binary \ | ||
"ark:gunzip -c $src_dir/ali.JOB.gz |" \ | ||
ark,scp:$dir/ali_tmp.JOB.ark,$dir/ali_tmp.JOB.scp || exit 1 | ||
|
||
# Make copies of utterances for perturbed data | ||
utt_prefixes=`echo $noise_list | awk -F ":" '{for (i=1; i<=NF; i++) printf "%s- ", $i}'` | ||
for p in $utt_prefixes; do | ||
cat $dir/ali_tmp.*.scp | awk -v p=$p '{print p$0}' | ||
done | sort -k1,1 > $dir/ali_out.scp.noise | ||
|
||
cat $dir/ali_tmp.*.scp | awk '{print $0}' | sort -k1,1 > $dir/ali_out.scp.clean | ||
|
||
cat $dir/ali_out.scp.clean $dir/ali_out.scp.noise | sort -k1,1 > $dir/ali_out.scp | ||
|
||
utils/split_data.sh ${data} $nj | ||
|
||
# Copy and dump the lattices for perturbed data | ||
echo Creating alignments for augmented data by copying alignments from clean data | ||
$cmd --max-jobs-run $max_jobs_run JOB=1:$nj $dir/log/copy_out_ali.JOB.log \ | ||
copy-int-vector --binary=$write_binary \ | ||
"scp:utils/filter_scp.pl ${data}/split$nj/JOB/utt2spk $dir/ali_out.scp |" \ | ||
"ark:| gzip -c > $dir/ali.JOB.gz" || exit 1 | ||
|
||
#rm $dir/ali_out.scp.{prefix,clean} $dir/ali_out.scp | ||
rm $dir/ali_tmp.* | ||
|
||
echo $nj > $dir/num_jobs | ||
|
||
for f in cmvn_opts tree splice_opts phones.txt final.mdl splice_opts tree frame_subsampling_factor; do | ||
if [ -f $src_dir/$f ]; then cp $src_dir/$f $dir/$f; fi | ||
done |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
#!/bin/bash | ||
|
||
noise_list="reverb1:babble:music:noise" | ||
max_jobs_run=50 | ||
nj=100 | ||
cmd=queue.pl | ||
write_compact=true | ||
|
||
. ./path.sh | ||
. utils/parse_options.sh | ||
|
||
if [ $# -ne 3 ]; then | ||
echo "Usage: $0 <out-data> <src-ali-dir> <out-ali-dir>" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Sem thing to this script. Also change ali-dir to lat-dir and give a description of what this script does. |
||
exit 1 | ||
fi | ||
|
||
data=$1 | ||
src_dir=$2 | ||
dir=$3 | ||
|
||
mkdir -p $dir | ||
|
||
num_jobs=$(cat $src_dir/num_jobs) | ||
|
||
rm -f $dir/lat_tmp.*.{ark,scp} 2>/dev/null | ||
|
||
# Copy the alignments temporarily | ||
echo "creating temporary lattices in $dir" | ||
$cmd --max-jobs-run $max_jobs_run JOB=1:$num_jobs $dir/log/copy_lat_temp.JOB.log \ | ||
lattice-copy --write-compact=$write_compact \ | ||
"ark:gunzip -c $src_dir/lat.JOB.gz |" \ | ||
ark,scp:$dir/lat_tmp.JOB.ark,$dir/lat_tmp.JOB.scp || exit 1 | ||
|
||
# Make copies of utterances for perturbed data | ||
utt_prefixes=`echo $noise_list | awk -F ":" '{for (i=1; i<=NF; i++) printf "%s- ", $i}'` | ||
for p in $utt_prefixes; do | ||
cat $dir/lat_tmp.*.scp | awk -v p=$p '{print p$0}' | ||
done | sort -k1,1 > $dir/lat_out.scp.noise | ||
|
||
cat $dir/lat_tmp.*.scp | awk '{print $0}' | sort -k1,1 > $dir/lat_out.scp.clean | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If clean data is also needed to be added, then add another option for this such as --include-original. This type of option is already used in one of the older scripts. |
||
|
||
cat $dir/lat_out.scp.clean $dir/lat_out.scp.noise | sort -k1,1 > $dir/lat_out.scp | ||
|
||
utils/split_data.sh ${data} $nj | ||
|
||
# Copy and dump the lattices for perturbed data | ||
echo Creating lattices for augmented data by copying lattices from clean data | ||
$cmd --max-jobs-run $max_jobs_run JOB=1:$nj $dir/log/copy_out_lat.JOB.log \ | ||
lattice-copy --write-compact=$write_compact \ | ||
"scp:utils/filter_scp.pl ${data}/split$nj/JOB/utt2spk $dir/lat_out.scp |" \ | ||
"ark:| gzip -c > $dir/lat.JOB.gz" || exit 1 | ||
|
||
#rm $dir/lat_out.scp.{noise,clean} $dir/lat_out.scp | ||
rm $dir/lat_tmp.* | ||
|
||
echo $nj > $dir/num_jobs | ||
|
||
for f in cmvn_opts splice_opts final.mdl splice_opts tree frame_subsampling_factor; do | ||
if [ -f $src_dir/$f ]; then cp $src_dir/$f $dir/$f; fi | ||
done |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think it is better to create a generic version of the script in steps like steps/copy_ali_dir.sh with option as --prefixes. It would be painful to keep copying this script to every new recipe.