-
Notifications
You must be signed in to change notification settings - Fork 5.4k
Augmentation recipe for swbd #1112
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
92ad8ba
Augmentation recipe for swbd
tomkocse 0bcf41e
result added
tomkocse 178c9d1
remove copy_ali_dir.sh; add --include-original-data to reverberate sc…
tomkocse dc13729
Add coments and fix typo
tomkocse 82cd6f7
fix --include-original-data option in reverberate_data_dir.py
tomkocse a4ee796
adding run_tdnn_7g.sh which is the current best chain result
tomkocse 67673fa
adding more comments the the script
tomkocse 823bcac
fixing typo
tomkocse 01e47f6
Moving tuning/run_tdnn_7g.sh back to multi_condition/run_tdnn_7f.sh
tomkocse b8453c0
Merge branch 'master' into new_augment_swbd
vijayaditya File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
249 changes: 249 additions & 0 deletions
249
egs/swbd/s5c/local/chain/multi_condition/run_tdnn_7f.sh
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,249 @@ | ||
| #!/bin/bash | ||
|
|
||
| # This script (multi_condition/run_tdnn_7f.sh) is the reverberated version of | ||
| # tuning/run_tdnn_7f.sh. It reverberates the training data with room impulse responses | ||
| # which leads to better results. | ||
| # (The reverberation of data is done in multi_condition/run_ivector_common.sh) | ||
| # This script assumes a mixing of the original training data with its reverberated copy | ||
| # and results in a 2-fold training set. Thus the number of epochs is halved to | ||
| # keep the same training time. The model converges after 2 epochs of training, | ||
| # The WER doesn't change much with more epochs of training. | ||
| # local/chain/compare_wer.sh tuning/7f multi_condition/7f | ||
| # System tuning/7f multi_condition/7f | ||
| # WER on train_dev(tg) 14.46 14.27 | ||
| # WER on train_dev(fg) 13.23 13.16 | ||
| # WER on eval2000(tg) 17.0 16.3 | ||
| # WER on eval2000(fg) 15.4 14.6 | ||
| # Final train prob -0.0882071 -0.123325 | ||
| # Final valid prob -0.107545 -0.131798 | ||
| # Final train prob (xent) -1.26246 -1.6196 | ||
| # Final valid prob (xent) -1.35525 -1.60244 | ||
|
|
||
|
|
||
| set -e | ||
|
|
||
| # configs for 'chain' | ||
| affix= | ||
| stage=1 | ||
| train_stage=-10 | ||
| get_egs_stage=-10 | ||
| speed_perturb=true | ||
| dir=exp/chain/tdnn_7f # Note: _sp will get added to this if $speed_perturb == true. | ||
| decode_iter= | ||
| ivector_dir=exp/nnet3_rvb | ||
| num_data_reps=1 # number of reverberated copies of data to generate | ||
| input_train_set=train_nodup | ||
|
|
||
|
|
||
| # TDNN options | ||
| # this script uses the new tdnn config generator so it needs a final 0 to reflect that the final layer input has no splicing | ||
| splice_indexes="-1,0,1 -1,0,1 -1,0,1 -3,0,3 -3,0,3 -6,0,6 0" | ||
| # smoothing options | ||
| self_repair_scale=0.00001 | ||
| # training options | ||
| num_epochs=2 | ||
| initial_effective_lrate=0.001 | ||
| final_effective_lrate=0.0001 | ||
| leftmost_questions_truncate=-1 | ||
| max_param_change=2.0 | ||
| final_layer_normalize_target=0.5 | ||
| num_jobs_initial=3 | ||
| num_jobs_final=16 | ||
| minibatch_size=128 | ||
| relu_dim=625 | ||
| frames_per_eg=150 | ||
| remove_egs=false | ||
| common_egs_dir= | ||
| xent_regularize=0.1 | ||
|
|
||
| # End configuration section. | ||
| echo "$0 $@" # Print the command line for logging | ||
|
|
||
| . ./cmd.sh | ||
| . ./path.sh | ||
| . ./utils/parse_options.sh | ||
|
|
||
| if ! cuda-compiled; then | ||
| cat <<EOF && exit 1 | ||
| This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA | ||
| If you want to use GPUs (and have them), go to src/, and configure and make on a machine | ||
| where "nvcc" is installed. | ||
| EOF | ||
| fi | ||
|
|
||
| # The iVector-extraction and feature-dumping parts are the same as the standard | ||
| # nnet3 setup, and you can skip them by setting "--stage 8" if you have already | ||
| # run those things. | ||
|
|
||
| suffix= | ||
| if [ "$speed_perturb" == "true" ]; then | ||
| suffix=_sp | ||
| fi | ||
|
|
||
| dir=${dir}${affix:+_$affix}${suffix}_rvb${num_data_reps} | ||
| clean_train_set=${input_train_set}${suffix} | ||
| train_set=${clean_train_set}_rvb${num_data_reps} | ||
| ali_dir=exp/tri4_ali_nodup$suffix | ||
| treedir=exp/chain/tri5_7d_tree$suffix | ||
| lang=data/lang_chain_2y | ||
| clean_lat_dir=exp/tri4_lats_nodup${suffix} | ||
| lat_dir=${clean_lat_dir}_rvb${num_data_reps} | ||
|
|
||
|
|
||
| # The data reverberation will be done in this script. | ||
| local/nnet3/multi_condition/run_ivector_common.sh --stage $stage \ | ||
| --input-data-dir ${input_train_set} \ | ||
| --ivector-dir $ivector_dir \ | ||
| --speed-perturb $speed_perturb \ | ||
| --num-data-reps $num_data_reps || exit 1; | ||
|
|
||
|
|
||
| if [ $stage -le 9 ]; then | ||
| # Get the alignments as lattices (gives the LF-MMI training more freedom). | ||
| # use the same num-jobs as the alignments | ||
| nj=$(cat exp/tri4_ali_nodup${suffix}/num_jobs) || exit 1; | ||
| steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/${clean_train_set} \ | ||
| data/lang exp/tri4 $clean_lat_dir | ||
| rm $clean_lat_dir/fsts.*.gz # save space | ||
|
|
||
|
|
||
| # Create the lattices for the reverberated data | ||
| # We use the lattices/alignments from the clean data for the reverberated data. | ||
| mkdir -p $lat_dir/temp/ | ||
| lattice-copy "ark:gunzip -c $clean_lat_dir/lat.*.gz |" ark,scp:$lat_dir/temp/lats.ark,$lat_dir/temp/lats.scp | ||
|
|
||
| # copy the lattices for the reverberated data | ||
| rm -f $lat_dir/temp/combined_lats.scp | ||
| touch $lat_dir/temp/combined_lats.scp | ||
| # Here prefix "rev0_" represents the clean set, "rev1_" represents the reverberated set | ||
| for i in `seq 0 $num_data_reps`; do | ||
| cat $lat_dir/temp/lats.scp | sed -e "s/^/rev${i}_/" >> $lat_dir/temp/combined_lats.scp | ||
| done | ||
| sort -u $lat_dir/temp/combined_lats.scp > $lat_dir/temp/combined_lats_sorted.scp | ||
|
|
||
| lattice-copy scp:$lat_dir/temp/combined_lats_sorted.scp "ark:|gzip -c >$lat_dir/lat.1.gz" || exit 1; | ||
| echo "1" > $lat_dir/num_jobs | ||
|
|
||
| # copy other files from original lattice dir | ||
| for f in cmvn_opts final.mdl splice_opts tree; do | ||
| cp $clean_lat_dir/$f $lat_dir/$f | ||
| done | ||
| fi | ||
|
|
||
|
|
||
| if [ $stage -le 10 ]; then | ||
| # Create a version of the lang/ directory that has one state per phone in the | ||
| # topo file. [note, it really has two states.. the first one is only repeated | ||
| # once, the second one has zero or more repeats.] | ||
| rm -rf $lang | ||
| cp -r data/lang $lang | ||
| silphonelist=$(cat $lang/phones/silence.csl) || exit 1; | ||
| nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; | ||
| # Use our special topology... note that later on may have to tune this | ||
| # topology. | ||
| steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo | ||
| fi | ||
|
|
||
| if [ $stage -le 11 ]; then | ||
| # Build a tree using our new topology. This is the critically different | ||
| # step compared with other recipes. | ||
| # we build the tree using the clean alignments as we empirically found that this was better. | ||
| steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ | ||
| --leftmost-questions-truncate $leftmost_questions_truncate \ | ||
| --context-opts "--context-width=2 --central-position=1" \ | ||
| --cmd "$train_cmd" 7000 data/${clean_train_set} $lang $ali_dir $treedir | ||
| fi | ||
|
|
||
| if [ $stage -le 12 ]; then | ||
| echo "$0: creating neural net configs"; | ||
| if [ ! -z "$relu_dim" ]; then | ||
| dim_opts="--relu-dim $relu_dim" | ||
| else | ||
| dim_opts="--pnorm-input-dim $pnorm_input_dim --pnorm-output-dim $pnorm_output_dim" | ||
| fi | ||
|
|
||
| # create the config files for nnet initialization | ||
| repair_opts=${self_repair_scale:+" --self-repair-scale-nonlinearity $self_repair_scale "} | ||
|
|
||
| steps/nnet3/tdnn/make_configs.py \ | ||
| $repair_opts \ | ||
| --feat-dir data/${train_set}_hires \ | ||
| --ivector-dir $ivector_dir/ivectors_${train_set} \ | ||
| --tree-dir $treedir \ | ||
| $dim_opts \ | ||
| --splice-indexes "$splice_indexes" \ | ||
| --use-presoftmax-prior-scale false \ | ||
| --xent-regularize $xent_regularize \ | ||
| --xent-separate-forward-affine true \ | ||
| --include-log-softmax false \ | ||
| --final-layer-normalize-target $final_layer_normalize_target \ | ||
| $dir/configs || exit 1; | ||
| fi | ||
|
|
||
|
|
||
|
|
||
| if [ $stage -le 13 ]; then | ||
| if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then | ||
| utils/create_split_dir.pl \ | ||
| /export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-reverb-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage | ||
| fi | ||
|
|
||
| steps/nnet3/chain/train.py --stage $train_stage \ | ||
| --cmd "$decode_cmd" \ | ||
| --feat.online-ivector-dir $ivector_dir/ivectors_${train_set} \ | ||
| --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ | ||
| --chain.xent-regularize $xent_regularize \ | ||
| --chain.leaky-hmm-coefficient 0.1 \ | ||
| --chain.l2-regularize 0.00005 \ | ||
| --chain.apply-deriv-weights false \ | ||
| --chain.lm-opts="--num-extra-lm-states=2000" \ | ||
| --egs.dir "$common_egs_dir" \ | ||
| --egs.stage $get_egs_stage \ | ||
| --egs.opts "--frames-overlap-per-eg 0" \ | ||
| --egs.chunk-width $frames_per_eg \ | ||
| --trainer.num-chunk-per-minibatch $minibatch_size \ | ||
| --trainer.frames-per-iter 1500000 \ | ||
| --trainer.num-epochs $num_epochs \ | ||
| --trainer.optimization.num-jobs-initial $num_jobs_initial \ | ||
| --trainer.optimization.num-jobs-final $num_jobs_final \ | ||
| --trainer.optimization.initial-effective-lrate $initial_effective_lrate \ | ||
| --trainer.optimization.final-effective-lrate $final_effective_lrate \ | ||
| --trainer.max-param-change $max_param_change \ | ||
| --cleanup.remove-egs $remove_egs \ | ||
| --feat-dir data/${train_set}_hires \ | ||
| --tree-dir $treedir \ | ||
| --lat-dir $lat_dir \ | ||
| --dir $dir || exit 1; | ||
|
|
||
| fi | ||
|
|
||
| if [ $stage -le 14 ]; then | ||
| # Note: it might appear that this $lang directory is mismatched, and it is as | ||
| # far as the 'topo' is concerned, but this script doesn't read the 'topo' from | ||
| # the lang directory. | ||
| utils/mkgraph.sh --left-biphone --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg | ||
| fi | ||
|
|
||
| decode_suff=sw1_tg | ||
| graph_dir=$dir/graph_sw1_tg | ||
| if [ $stage -le 15 ]; then | ||
| iter_opts= | ||
| if [ ! -z $decode_iter ]; then | ||
| iter_opts=" --iter $decode_iter " | ||
| fi | ||
| for decode_set in train_dev eval2000; do | ||
| ( | ||
| steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ | ||
| --nj 50 --cmd "$decode_cmd" $iter_opts \ | ||
| --online-ivector-dir $ivector_dir/ivectors_${decode_set} \ | ||
| $graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_${decode_suff} || exit 1; | ||
| if $has_fisher; then | ||
| steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
| data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
| $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1; | ||
| fi | ||
| ) & | ||
| done | ||
| fi | ||
| wait; | ||
| exit 0; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1 +1 @@ | ||
| tuning/run_tdnn_7e.sh | ||
| tuning/run_tdnn_7f.sh |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Does the model converge after 2 epochs of training ? Could you please post the log-likelihood plots here.