Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions egs/rm/s5/RESULTS
Original file line number Diff line number Diff line change
Expand Up @@ -230,8 +230,9 @@ for x in exp/nnet2_online_wsj/nnet_ms_a_smbr_0.00005/1/decode_*; do grep WER $x/
%WER 7.36 [ 923 / 12533, 85 ins, 148 del, 690 sub ] exp/nnet2_online_wsj/nnet_ms_a_smbr_0.00005/1/decode_ug_epoch4/wer_13

### chain results ###
# current best chain result with TDNN (check local/chain/run_tdnn_5f.sh)
%WER 2.94 [ 369 / 12533, 51 ins, 71 del, 247 sub ] exp/chain/tdnn_5f/decode/wer_3_0.5
# current best chain result with TDNN (check local/chain/run_tdnn_5g.sh)
%WER 2.86 [ 358 / 12533, 46 ins, 61 del, 251 sub ] exp/chain/tdnn_5g/decode/wer_5_0.0
%WER 2.71 [ 340 / 12533, 58 ins, 59 del, 223 sub ] exp/chain/tdnn_5n/decode/wer_4_0.0

### nnet1 results ###

Expand Down
155 changes: 155 additions & 0 deletions egs/rm/s5/local/chain/run_tdnn_5g.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
#!/bin/bash

# This is modified from run_tdnn_5f.sh, to use the old topology, as a baseline
# to test the modified transition-model code (by which we hope to be able to
# create more compact decoding graphs for chain models).

set -e

# configs for 'chain'
stage=0
train_stage=-10
get_egs_stage=-10
dir=exp/chain/tdnn_5g

# training options
num_epochs=12
initial_effective_lrate=0.005
final_effective_lrate=0.0005
leftmost_questions_truncate=-1
max_param_change=2.0
final_layer_normalize_target=0.5
num_jobs_initial=2
num_jobs_final=4
minibatch_size=128
frames_per_eg=150
remove_egs=false

# End configuration section.
echo "$0 $@" # Print the command line for logging

. cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet2 setup, and you can skip them by setting "--stage 4" if you have already
# run those things.

ali_dir=exp/tri3b_ali
treedir=exp/chain/tri4_5g_tree
lang=data/lang_chain_5g

local/online/run_nnet2_common.sh --stage $stage || exit 1;

if [ $stage -le 4 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
nj=$(cat exp/tri3b_ali/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train \
data/lang exp/tri3b exp/tri3b_lats
rm exp/tri3b_lats/fsts.*.gz # save space
fi

if [ $stage -le 5 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo_orig.py $nonsilphonelist $silphonelist >$lang/topo
fi

if [ $stage -le 6 ]; then
# Build a tree using our new topology.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--leftmost-questions-truncate $leftmost_questions_truncate \
--cmd "$train_cmd" 1200 data/train $lang $ali_dir $treedir
fi

if [ $stage -le 7 ]; then
mkdir -p $dir

echo "$0: creating neural net configs";

steps/nnet3/tdnn/make_configs.py \
--self-repair-scale-nonlinearity 0.00001 \
--feat-dir data/train \
--ivector-dir exp/nnet2_online/ivectors \
--tree-dir $treedir \
--relu-dim 450 \
--splice-indexes "-1,0,1 -2,-1,0,1 -3,0,3 -6,-3,0 0" \
--use-presoftmax-prior-scale false \
--xent-regularize 0.1 \
--xent-separate-forward-affine true \
--include-log-softmax false \
--final-layer-normalize-target 1.0 \
$dir/configs || exit 1;
fi

if [ $stage -le 8 ]; then
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet2_online/ivectors \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize 0.1 \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=200" \
--egs.dir "$common_egs_dir" \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_eg \
--trainer.num-chunk-per-minibatch $minibatch_size \
--trainer.frames-per-iter 1000000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial $num_jobs_initial \
--trainer.optimization.num-jobs-final $num_jobs_final \
--trainer.optimization.initial-effective-lrate $initial_effective_lrate \
--trainer.optimization.final-effective-lrate $final_effective_lrate \
--trainer.max-param-change $max_param_change \
--cleanup.remove-egs true \
--feat-dir data/train \
--tree-dir $treedir \
--lat-dir exp/tri3b_lats \
--dir $dir
fi

if [ $stage -le 9 ]; then
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
data/test exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
fi

if [ $stage -le 10 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--scoring-opts "--min-lmwt 1" \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph data/test $dir/decode || exit 1;
fi

if [ $stage -le 11 ]; then
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_ug $dir $dir/graph_ug
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph_ug data/test $dir/decode_ug || exit 1;
fi
wait;
exit 0;
85 changes: 55 additions & 30 deletions egs/rm/s5/local/chain/run_tdnn_5f.sh → egs/rm/s5/local/chain/run_tdnn_5n.sh
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,14 +1,17 @@
#!/bin/bash

# this script is a modified version of swbd/run_tdnn_5f.sh
# this script is a modified version of run_tdnn_5g.sh. It uses
# the new transition model and the python version of training scripts.



set -e

# configs for 'chain'
stage=0
train_stage=-10
get_egs_stage=-10
dir=exp/chain/tdnn_5f
dir=exp/chain/tdnn_5n

# training options
num_epochs=12
Expand Down Expand Up @@ -43,13 +46,13 @@ fi
# run those things.

ali_dir=exp/tri3b_ali
treedir=exp/chain/tri4_2y_tree
lang=data/lang_chain_2y
treedir=exp/chain/tri4_5n_tree
lang=data/lang_chain_5n

local/online/run_nnet2_common.sh --stage $stage || exit 1;

if [ $stage -le 4 ]; then
# Get the alignments as lattices (gives the CTC training more freedom).
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
nj=$(cat exp/tri3b_ali/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train \
Expand Down Expand Up @@ -78,51 +81,73 @@ if [ $stage -le 6 ]; then
fi

if [ $stage -le 7 ]; then
steps/nnet3/chain/train_tdnn.sh --stage $train_stage \
mkdir -p $dir

echo "$0: creating neural net configs";

steps/nnet3/tdnn/make_configs.py \
--self-repair-scale-nonlinearity 0.00001 \
--feat-dir data/train \
--ivector-dir exp/nnet2_online/ivectors \
--tree-dir $treedir \
--relu-dim 450 \
--splice-indexes "-1,0,1 -2,-1,0,1 -3,0,3 -6,-3,0 0" \
--use-presoftmax-prior-scale false \
--xent-regularize 0.1 \
--leaky-hmm-coefficient 0.1 \
--l2-regularize 0.00005 \
--jesus-opts "--jesus-forward-input-dim 200 --jesus-forward-output-dim 500 --jesus-hidden-dim 2000 --jesus-stddev-scale 0.2 --final-layer-learning-rate-factor 0.25" \
--splice-indexes "-1,0,1 -2,-1,0,1 -3,0,3 -6,-3,0" \
--apply-deriv-weights false \
--frames-per-iter 1000000 \
--lm-opts "--num-extra-lm-states=200" \
--get-egs-stage $get_egs_stage \
--minibatch-size $minibatch_size \
--egs-opts "--frames-overlap-per-eg 0" \
--frames-per-eg $frames_per_eg \
--num-epochs $num_epochs --num-jobs-initial $num_jobs_initial --num-jobs-final $num_jobs_final \
--feat-type raw \
--online-ivector-dir exp/nnet2_online/ivectors \
--cmvn-opts "--norm-means=false --norm-vars=false" \
--initial-effective-lrate $initial_effective_lrate --final-effective-lrate $final_effective_lrate \
--max-param-change $max_param_change \
--cmd "$decode_cmd" \
--remove-egs $remove_egs \
data/train $treedir exp/tri3b_lats $dir || exit 1;
--xent-separate-forward-affine true \
--include-log-softmax false \
--final-layer-normalize-target 1.0 \
$dir/configs || exit 1;
fi

if [ $stage -le 8 ]; then
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet2_online/ivectors \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize 0.1 \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=200" \
--egs.dir "$common_egs_dir" \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_eg \
--trainer.num-chunk-per-minibatch $minibatch_size \
--trainer.frames-per-iter 1000000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial $num_jobs_initial \
--trainer.optimization.num-jobs-final $num_jobs_final \
--trainer.optimization.initial-effective-lrate $initial_effective_lrate \
--trainer.optimization.final-effective-lrate $final_effective_lrate \
--trainer.max-param-change $max_param_change \
--cleanup.remove-egs true \
--feat-dir data/train \
--tree-dir $treedir \
--lat-dir exp/tri3b_lats \
--dir $dir
fi

if [ $stage -le 9 ]; then
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
data/test exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
fi

if [ $stage -le 9 ]; then
if [ $stage -le 10 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context 20 --scoring-opts "--min-lmwt 1" \
--scoring-opts "--min-lmwt 1" \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph data/test $dir/decode || exit 1;
fi

if [ $stage -le 10 ]; then
if [ $stage -le 11 ]; then
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_ug $dir $dir/graph_ug
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context 20 \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph_ug data/test $dir/decode_ug || exit 1;
Expand Down
8 changes: 5 additions & 3 deletions egs/wsj/s5/steps/nnet3/chain/gen_topo.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,9 @@

# Copyright 2012 Johns Hopkins University (author: Daniel Povey)

# This script was modified around 11.11.2016, when the code was extended to
# support having a different pdf-class on the self loop.

# Generate a topology file. This allows control of the number of states in the
# non-silence HMMs, and in the silence HMMs. This is a modified version of
# 'utils/gen_topo.pl' that generates a different type of topology, one that we
Expand Down Expand Up @@ -41,9 +44,8 @@
# We make the transition-probs 0.5 so they normalize, to keep the code happy.
# In fact, we always set the transition probability scale to 0.0 in the 'chain'
# code, so they are never used.
print("<State> 0 <PdfClass> 0 <Transition> 1 0.5 <Transition> 2 0.5 </State>")
print("<State> 1 <PdfClass> 1 <Transition> 1 0.5 <Transition> 2 0.5 </State>")
print("<State> 2 </State>")
print("<State> 0 <ForwardPdfClass> 0 <SelfLoopPdfClass> 1 <Transition> 0 0.5 <Transition> 1 0.5 </State>")
print("<State> 1 </State>")
print("</TopologyEntry>")
print("</Topology>")

53 changes: 53 additions & 0 deletions egs/wsj/s5/steps/nnet3/chain/gen_topo_orig.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#!/usr/bin/env python

# Copyright 2012 Johns Hopkins University (author: Daniel Povey)

# This file is as ./gen_topo.py used to be (before we extended the transition-model
# code to support having a different self-loop pdf-class). It is included
# here for baseline and testing purposes.


# Generate a topology file. This allows control of the number of states in the
# non-silence HMMs, and in the silence HMMs. This is a modified version of
# 'utils/gen_topo.pl' that generates a different type of topology, one that we
# believe should be useful in the 'chain' model. Note: right now it doesn't
# have any real options, and it treats silence and nonsilence the same. The
# intention is that you write different versions of this script, or add options,
# if you experiment with it.

from __future__ import print_function
import argparse


parser = argparse.ArgumentParser(description="Usage: steps/nnet3/chain/gen_topo.py "
"<colon-separated-nonsilence-phones> <colon-separated-silence-phones>"
"e.g.: steps/nnet3/chain/gen_topo.pl 4:5:6:7:8:9:10 1:2:3\n",
epilog="See egs/swbd/s5c/local/chain/train_tdnn_a.sh for example of usage.");
parser.add_argument("nonsilence_phones", type=str,
help="List of non-silence phones as integers, separated by colons, e.g. 4:5:6:7:8:9");
parser.add_argument("silence_phones", type=str,
help="List of silence phones as integers, separated by colons, e.g. 1:2:3");

args = parser.parse_args()

silence_phones = [ int(x) for x in args.silence_phones.split(":") ]
nonsilence_phones = [ int(x) for x in args.nonsilence_phones.split(":") ]
all_phones = silence_phones + nonsilence_phones

print("<Topology>")
print("<TopologyEntry>")
print("<ForPhones>")
print(" ".join([str(x) for x in all_phones]))
print("</ForPhones>")
# The next two lines may look like a bug, but they are as intended. State 0 has
# no self-loop, it happens exactly once. And it can go either to state 1 (with
# a self-loop) or to state 2, so we can have zero or more instances of state 1
# following state 0.
# We make the transition-probs 0.5 so they normalize, to keep the code happy.
# In fact, we always set the transition probability scale to 0.0 in the 'chain'
# code, so they are never used.
print("<State> 0 <PdfClass> 0 <Transition> 1 0.5 <Transition> 2 0.5 </State>")
print("<State> 1 <PdfClass> 1 <Transition> 1 0.5 <Transition> 2 0.5 </State>")
print("<State> 2 </State>")
print("</TopologyEntry>")
print("</Topology>")
2 changes: 0 additions & 2 deletions src/bin/acc-tree-stats.cc
Original file line number Diff line number Diff line change
Expand Up @@ -128,5 +128,3 @@ int main(int argc, char *argv[]) {
return -1;
}
}


Loading