Skip to content

kabothu/karate

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Karate

Web-Services Testing Made Simple. Maven Central Build Status GitHub release Support Slack Twitter Follow

Karate enables you to script a sequence of calls to any kind of web-service and assert that the responses are as expected. It makes it really easy to build complex request payloads, traverse data within the responses, and chain data from responses into the next request. Karate's payload validation engine can perform a 'smart compare' of two JSON or XML documents without being affected by white-space or the order in which data-elements actually appear, and you can opt to ignore fields that you choose.

Since Karate is built on top of Cucumber-JVM, you can run tests and generate reports like any standard Java project. But instead of Java - you write tests in a language designed to make dealing with HTTP, JSON or XML - simple.

Hello World

Feature: karate 'hello world' example
Scenario: create and retrieve a cat

Given url 'http://myhost.com/v1/cats'
And request { name: 'Billie' }
When method post
Then status 201
And match response == { id: '#notnull', name: 'Billie' }

Given path response.id
When method get
Then status 200

It is worth pointing out that JSON is a 'first class citizen' of the syntax such that you can express payload and expected data without having to use double-quotes and without having to enclose JSON field names in quotes. There is no need to 'escape' characters like you would have had to in Java.

And you don't need to create Java objects (or POJO-s) for any of the payloads that you need to work with.

Index

▫️ ▫️ ▫️ ▫️ ▫️
Getting Started Maven / Quickstart Folder Structure Naming Conventions JUnit / TestNG
.... Cucumber Options Command Line Logging Configuration
.... Environment Switching Script Structure Given-When-Then Cucumber vs Karate
Variables & Expressions def assert print table
Data Types JSON XML JavaScript Functions Reading Files
Primary HTTP Keywords url path request method
.... status soap action configure
Secondary HTTP Keywords param header cookie
.... form field multipart field multipart entity
Get, Set, Match get / set match == contains / only match each
Special Variables response / cookies responseHeaders responseStatus responseTime
Code Re-Use call Calling *.feature files Calling JS Functions JS karate object
Tips / Examples Embedded Expressions GraphQL RegEx Example Calling Java Cucumber Tags
.... Data Driven Tests Auth / Headers Ignore / Validate Examples and Demos

Features

  • Java knowledge is not required to write tests
  • Scripts are plain-text files and require no compilation step or IDE
  • Based on the popular Cucumber / Gherkin standard, and IDE support and syntax-coloring options exist
  • Syntax 'natively' supports JSON and XML - including JsonPath and XPath expressions
  • Express expected results as readable, well-formed JSON or XML, and assert (in a single step) that the entire response payload (no matter how complex or deeply nested) - is as expected
  • Payload assertion failures clearly report which data element (and path) is not as expected, for easy troubleshooting of even large payloads
  • Scripts can call other scripts - which means that you can easily re-use and maintain authentication and 'set up' flows efficiently, across multiple tests
  • Embedded JavaScript engine that allows you to build a library of re-usable functions that suit your specific environment or organization
  • Re-use of payload-data and user-defined functions across tests is so easy - that it becomes a natural habit for the test-developer
  • Built-in support for switching configuration across different environments (e.g. dev, QA, pre-prod)
  • Support for data-driven tests and being able to tag (or group) tests is built-in, no need to rely on TestNG or JUnit
  • Seamless integration into existing Java projects and CI / CD pipelines as both JUnit and TestNG are supported
  • Support for multi-threaded parallel execution, which is a huge time-saver, especially for HTTP integration tests
  • Easily invoke JDK classes, Java libraries, or re-use custom Java code if needed, for ultimate extensibility
  • Simple plug-in system for authentication and HTTP header management that will handle any complex real-world scenario
  • Comprehensive support for different flavors of HTTP calls:
    • SOAP / XML requests
    • HTTPS / SSL - without needing certificates, key-stores or trust-stores
    • HTTP proxy server support
    • URL-encoded HTML-form data
    • Multi-part file-upload - including 'multipart/mixed' and 'multipart/related'
    • Browser-like cookie handling
    • Full control over HTTP headers, path and query parameters
    • Intelligent defaults

Real World Examples

A set of real-life examples can be found here: Karate Demos

Getting Started

Karate requires Java 8 and Maven to be installed.

If you use the open-source Eclipse Java IDE, you should consider installing the free Cucumber-Eclipse plugin. It provides syntax coloring, and the best part is that you can 'right-click' and run Karate test scripts without needing to write a single line of Java code.

If you use IntelliJ, Cucumber support is built-in and you can even select and run a single Scenario at a time.

Maven

This is all that you need within your <dependencies>:

<dependency>
    <groupId>com.intuit.karate</groupId>
    <artifactId>karate-junit4</artifactId>
    <version>0.2.8</version>
    <scope>test</scope>
</dependency>

TestNG instead of JUnit

If you want to use TestNG, use the artifactId karate-testng. If you are starting a project from scratch, we strongly recommend that you use JUnit. Do note that dynamic tables, data-driven testing and tag-groups are built-in to Karate, so you don't need to depend on things like the TestNG @DataProvider anymore.

Use the TestNG test-runner only when you are trying to add Karate tests side-by-side with an existing set of TestNG test-classes, possibly as a migration strategy.

Quickstart

It may be easier for you to use the Karate Maven archetype to create a skeleton project with one command. You can then skip the next few sections, as the pom.xml, recommended directory structure and starter files would be created for you.

You can replace the values of 'com.mycompany' and 'myproject' as per your needs.

mvn archetype:generate \
-DarchetypeGroupId=com.intuit.karate \
-DarchetypeArtifactId=karate-archetype \
-DarchetypeVersion=0.2.8 \
-DgroupId=com.mycompany \
-DartifactId=myproject

This will create a folder called 'myproject' (or whatever you set the name to).

You can refer to this this nice blog post and video by Joe Colantonio which provides step by step instructions on how to get started using Eclipse. Also make sure you install the Cucumber-Eclipse plugin !

Folder Structure

A Karate test script has the file extension .feature which is the standard followed by Cucumber. You are free to organize your files using regular Java package conventions.

The Maven tradition is to have non-Java source files in a separate src/test/resources folder structure - but we recommend that you keep them side-by-side with your *.java files. When you have a large and complex project, you will end up with a few data files (e.g. *.js, *.json, *.txt) as well and it is much more convenient to see the *.java and *.feature files and all related artifacts in the same place.

This can be easily achieved with the following tweak to your maven <build> section.

<build>
    <testResources>
        <testResource>
            <directory>src/test/java</directory>
            <excludes>
                <exclude>**/*.java</exclude>
            </excludes>
        </testResource>
    </testResources>        
    <plugins>
    ...
    </plugins>
</build>

This is very common in the world of Maven users and keep in mind that these are tests and not production code.

With the above in place, you don't have to keep switching between your src/test/java and src/test/resources folders, you can have all your test-code and artifacts under src/test/java and everything will work as expected.

Once you get used to this, you may even start wondering why projects need a src/test/resources folder at all !

Naming Conventions

Since these are tests and not production Java code, you don't need to be bound by the com.mycompany.foo.bar convention and the un-necessary explosion of sub-folders that ensues. We suggest that you have a folder hierarchy only one or two levels deep - where the folder names clearly identify which 'resource', 'entity' or API is the web-service under test.

For example:

src/test/java
    |
    +-- karate-config.js
    +-- logback-test.xml
    +-- some-reusable.feature
    +-- some-classpath-function.js
    +-- some-classpath-payload.json
    |
    \-- animals
        |
        +-- AnimalsTest.java
        |
        +-- cats
        |   |
        |   +-- cats-post.feature
        |   +-- cats-get.feature
        |   +-- cat.json
        |   \-- CatsRunner.java
        |
        \-- dogs
            |
            +-- dog-crud.feature
            +-- dog.json
            +-- some-helper-function.js
            \-- DogsRunner.java

Assuming you use JUnit, there are some good reasons for the recommended (best practice) naming convention and choice of file-placement shown above:

  • Not using the *Test.java convention for the JUnit classes (e.g. CatsRunner.java) in the cats and dogs folder ensures that these tests will not be picked up when invoking mvn test (for the whole project) from the command line. But you can still invoke these tests from the IDE, which is convenient when in development mode.
  • AnimalsTest.java (the only file that follows the *Test.java naming convention) acts as the 'test suite' for the entire project. By default, Karate will load all *.feature files from sub-directories as well. But since some-reusable.feature is above AnimalsTest.java in the folder heirarchy, it will not be picked-up. Which is exactly what we want, because some-reusable.feature is designed to be called only from one of the other test scripts (perhaps with some parameters being passed).
  • some-classpath-function.js and some-classpath-payload.js are on the Java 'classpath' which means they can be easily read (and re-used) from any test-script by using the classpath: prefix, for e.g: read('classpath:some-classpath-function.js').

For details on what actually goes into a script or *.feature file, refer to the syntax guide.

Running With JUnit

To run a script *.feature file from your Java IDE, you just need the following empty test-class in the same package. The name of the class doesn't matter, and it will automatically run any *.feature file in the same package. This comes in useful because depending on how you organize your files and folders - you can have multiple feature files executed by a single JUnit test-class.

package animals.cats;

import com.intuit.karate.junit4.Karate;
import org.junit.runner.RunWith;

@RunWith(Karate.class)
public class CatsRunner {
	
}

Refer to your IDE documentation for how to run a JUnit class. Typically right-clicking on the file in the project browser or even within the editor view would bring up the "Run as JUnit Test" menu option.

Karate will traverse sub-directories and look for *.feature files. For example if you have the JUnit class in the com.mycompany package, *.feature files in com.mycompany.foo and com.mycompany.bar will also be run.

Running With TestNG

You extend a class from the karate-testng Maven artifact like so. All other behavior is the same as if using JUnit.

package animals.cats;

import com.intuit.karate.testng.KarateRunner;

public class CatsRunner extends KarateRunner {
    
}

Cucumber Options

You normally don't need to - but if you want to run only a specific feature file from a JUnit test even if there are multiple *.feature files in the same folder, you could use the @CucumberOptions annotation.

package animals.cats;

import com.intuit.karate.junit4.Karate;
import cucumber.api.CucumberOptions;
import org.junit.runner.RunWith;

@RunWith(Karate.class)
@CucumberOptions(features = "classpath:animals/cats/cats-post.feature")
public class CatsPostRunner {
	
}

The features parameter in the annotation can take an array, so if you wanted to associate multiple feature files with a JUnit test, you could do this:

@CucumberOptions(features = {
    "classpath:animals/cats/cats-post.feature",
    "classpath:animals/cats/cats-get.feature"})

For TestNG: The @CucumberOptions annotation can be used the same way.

Command Line

It is possible to run tests from the command-line as well. Refer to the Cucumber documentation for more, including how to enable other report output formats such as HTML. For example, if you wanted to generate a report in the Cucumber HTML format:

mvn test -Dcucumber.options="--plugin html:target/cucumber-html"

A problem you may run into is that the report is generated for every JUnit class with the @RunWith(Karate.class) annotation. So if you have multiple JUnit classes involved in a test-run, you will end up with only the report for the last class as it would have over-written everything else. There are a couple of solutions, one is to use JUnit suites - but the simplest should be to have a JUnit class (with the Karate annotation) at a level 'above' (in terms of folder hierarchy) all the main *.feature files in your project. So if you take the previous folder structure example:

mvn test -Dcucumber.options="--plugin junit:target/cucumber-junit.xml --tags ~@ignore" -Dtest=AnimalsTest

Here, AnimalsTest is the name of the Java class we designated to run all your tests. And yes, Cucumber has a neat way to tag your tests and the above example demonstrates how to run all tests except the ones tagged @ignore.

The reporting and tag options can be specified in the test-class via the @CucumberOptions annotation, in which case you don't need to pass the -Dcucumber.options on the command-line:

@CucumberOptions(plugin = {"pretty", "html:target/cucumber"}, tags = {"~@ignore"})

Test Reports

You can 'lock down' the fact that you only want to execute the single JUnit class that functions as a test-suite - by using the following maven-surefire-plugin configuration:

<plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-surefire-plugin</artifactId>
    <version>2.10</version>
    <configuration>
        <includes>
            <include>animals/AnimalsTest.java</include>
        </includes>
        <systemProperties>
            <cucumber.options>--plugin junit:target/cucumber-junit.xml</cucumber.options>
        </systemProperties>            
    </configuration>
</plugin> 

This is actually the recommended configuration for generating CI-friendly reports when using Cucumber and note how the cucumber.options can be specified using the <systemProperties> configuration. Options here would over-ride corresponding options specified if a @CucumberOptions annotation is present (on AnimalsTest.java). So for the above example, any plugin options present on the annotation would not take effect, but anything else (for example tags) would continue to work.

With the above in place, you don't have to use -Dtest=AnimalsTest on the command-line any more. You may need to point your CI to the location of the JUnit XML report (e.g. target/cucumber-junit.xml) so that test-reports are generated correctly.

The Karate Demo has a working example of this set-up. Also refer to the section on switching the environment for more ways of running tests via Maven using the command-line.

Parallel Execution

Karate can run tests in parallel, and dramatically cut down execution time. This is a 'core' feature and does not depend on JUnit, TestNG or even Maven.

import com.intuit.karate.cucumber.CucumberRunner;
import com.intuit.karate.cucumber.KarateStats;
import cucumber.api.CucumberOptions;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

@CucumberOptions(tags = {"~@ignore"})
public class TestParallel {
    
    @Test
    public void testParallel() {
        KarateStats stats = CucumberRunner.parallel(getClass(), 5, "target/surefire-reports");
        assertTrue("scenarios failed", stats.getFailCount() == 0);
    }
    
}

Things to note:

  • You don't use a JUnit runner, and you write a plain vanilla JUnit test (it could very well be TestNG or plain old Java) using the CucumberRunner.parallel() static method in karate-core.
  • You can use the returned KarateStats to check if any scenarios failed.
  • The first argument is a class that marks the 'root package' in which *.feature files will be looked for, and sub-directories will be also scanned. As shown above you would typically refer to the test-class itself.
  • The second argument is the number of threads to use.
  • JUnit XML reports will be generated in the path you specify as the third parameter, and you can easily configure your CI to look for these files after a build (for e.g. in **/*.xml or **/surefire-reports/*.xml). This argument is optional and will default to target/surefire-reports.
  • No other reports will be generated. If you specify a plugin option via the @CucumberOptions annotation (or the command-line) it will be ignored.
  • But all other options passed to @CucumberOptions would work as expected, provided you point the CucumberRunner to the annotated class as the first argument. Note that in this example, any *.feature file tagged as @ignore will be skipped.
  • For convenience, some stats are logged to the console when execution completes, which should look something like this:
======================================================
elapsed time: 1.778000 | test time: 7.895000
thread count:  5 | parallel efficiency: 0.888076
scenarios: 12 | failed:  0 | skipped:  0
======================================================

The Karate Demo has a working example of this set-up.

Going forward, this is likely to be the preferred way of running all Karate tests in a project, mainly because the other Cucumber reports (e.g. HTML) are not thread-safe. In other words, please rely on the CucumberRunner.parallel() JUnit XML for CI build reporting, and if you see any problems, please submit a defect report.

Logging

This is optional, and Karate will work without the logging config in place, but the default console logging may be too verbose for your needs.

Karate uses LOGBack which looks for a file called logback-test.xml on the classpath. If you use the Maven <test-resources> tweak described earlier (recommended), keep this file in src/test/java, or else it should go into src/test/resources.

Here is a sample logback-test.xml for you to get started.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder>
            <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern>
        </encoder>
    </appender>
  
    <appender name="FILE" class="ch.qos.logback.core.FileAppender">
        <file>target/karate.log</file>
        <encoder>
            <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern>
        </encoder>
    </appender>    
   
    <logger name="com.intuit" level="DEBUG"/>
   
    <root level="info">
        <appender-ref ref="STDOUT" />
        <appender-ref ref="FILE" />
    </root>
  
</configuration>

You can change the com.intuit logger level to INFO to reduce the amount of logging.
When the level is DEBUG the entire request and response payloads are logged.

Configuration

You can skip this section and jump straight to the Syntax Guide if you are in a hurry to get started with Karate. Things will work even if the karate-config.js file is not present.

The only 'rule' is that on start-up Karate expects a file called karate-config.js to exist on the classpath and contain a JavaScript function. Karate will invoke this function and from that point onwards, you are free to set config properties in a variety of ways. One possible method is shown below, based on reading a Java system property.

function() {   
  var env = karate.env; // get java system property 'karate.env'
  karate.log('karate.env system property was:', env);
  if (!env) {
    env = 'dev'; // a custom 'intelligent' default
  }
  var config = { // base config
    env: env,
    appId: 'my.app.id',
    appSecret: 'my.secret',
    someUrlBase: 'https://some-host.com/v1/auth/',
    anotherUrlBase: 'https://another-host.com/v1/'
  };
  if (env == 'stage') {
    // over-ride only those that need to be
    config.someUrlBase: 'https://stage-host/v1/auth';
  } else if (env == 'e2e') {
    config.someUrlBase: 'https://e2e-host/v1/auth';
  }
  // don't waste time if a connection cannot be established within 5 seconds
  karate.configure('connectTimeout', 5000);
  return config;
}

The function is expected to return a JSON object and all keys and values in that JSON object will be made available as script variables. And that's all there is to Karate configuration.

The karate object has a few helper methods described in detail later in this document where the call keyword is explained. Here above, you see karate.log(), karate.env and karate.configure() being used.

This decision to use JavaScript for config is influenced by years of experience with the set-up of complicated test-suites and fighting with Maven profiles, Maven resource-filtering and the XML-soup that somehow gets summoned by the Maven AntRun plugin.

Karate's approach frees you from Maven, is far more expressive, allows you to eyeball all environments in one place, and is still a plain-text file. If you want, you could even create nested chunks of JSON that 'name-space' your config variables.

This approach is indeed slightly more complicated than traditional *.properties files - but you need this complexity. Keep in mind that these are tests (not production code) and this config is going to be maintained more by the dev or QE team instead of the 'ops' or operations team.

And there is no more worrying about Maven profiles and whether the 'right' *.properties file has been copied to the proper place.

Switching the Environment

There is only one thing you need to do to switch the environment - which is to set a Java system property.

The recipe for doing this when running Maven from the command line is:

mvn test -DargLine="-Dkarate.env=e2e"

You can refer to the documentation of the Maven Surefire Plugin for alternate ways of achieving this, but the argLine approach is the simplest and should be more than sufficient for your Continuous Integration or test-automation needs.

Here's a reminder that running any single JUnit test via Maven can be done by:

mvn test -Dtest=CatsRunner

Where CatsRunner is the JUnit class name (in any package) you wish to run.

Karate is flexible, you can easily over-write config variables within each individual test-script - which is very convenient when in dev-mode or rapid-prototyping.

Just for illustrative purposes, you could 'hard-code' the karate.env for a specific JUnit test like this. But don't get into the habit of doing this during development though - because if you forget to remove it, bad things would happen.

package animals.cats;

import com.intuit.karate.junit4.Karate;
import org.junit.BeforeClass;
import org.junit.runner.RunWith;

@RunWith(Karate.class)
public class CatsRunner {   
    
    @BeforeClass
    public static void before() {
        System.setProperty("karate.env", "pre-prod");
    }

}

Syntax Guide

Script Structure

Karate scripts are technically in 'Gherkin' format - but all you need to grok as someone who needs to test web-services are the three sections: Feature, Background and Scenario. There can be multiple Scenario-s in a *.feature file.

Lines that start with a # are comments.

Feature: brief description of what is being tested
    more lines of description if needed.

Background:
# steps here are expecuted before each Scenario in this file

Scenario: brief description of this scenario
# steps for this scenario

Scenario: a different scenario
# steps for this other scenario

Given-When-Then

The business of web-services testing requires access to low-level aspects such as HTTP headers, URL-paths, query-parameters, complex JSON or XML payloads and response-codes. And Karate gives you control over these aspects with the small set of keywords focused on HTTP such as url, path, param, etc.

Karate does not attempt to have tests be in "natural language" like how Cucumber tests are traditionally expected to be. That said, the syntax is very concise, and the convention of every step having to start with either Given, And, When or Then, makes things very readable. You end up with a decent approximation of BDD even though web-services by nature are "headless", without a UI, and not really human-friendly.

Cucumber vs Karate

If you are familiar with Cucumber (JVM), you may be wondering if you need to write step-definitions. The answer is no.

Karate's approach is that all the step-definitions you need in order to work with HTTP, JSON and XML have been already implemented. And since you can easily extend Karate using JavaScript, there is no need to compile Java code any more.

The following table summmarizes some key differences between Cucumber and Karate.

▫️ Cucumber Karate
More Step Definitions Needed Yes. You need to keep implementing them as your functionality grows. This can get very tedious. âś… No.
Layers of Code to Maintain 2 Layers. The Gherkin spec or *.feature files make up one layer, and you will also have the corresponding Java step-definitions. âś… 1 Layer. Only Karate-script (based on Gherkin), and no Java code needs to be implemented.
Readable Specification Yes. Cucumber will read like natural language if you implement the step-definitions right. ❌ No. Although Karate is simple, and a true DSL, it is ultimately a mini-programming language. But it is perfect for testing web-services at the level of HTTP requests and responses.
Re-Use Feature Files No. Cucumber does not support being able to call (and thus re-use) other *.feature files from a test-script. âś… Yes.
Dynamic Data-Driven Testing No. The Scenario Outline: feature of Cucumber expects the Examples: to contain a fixed set of rows. âś… Yes. Karate's support for calling other *.feature files allows you to use a JSON array as the data-source.
Parallel Execution No. There are some challenges (especially with reporting) and you can find various threads and third-party projects on the internet that attempt to close this gap. âś… Yes.
BDD Syntax Yes âś… Yes

One nice thing about the design of the underlying Cucumber framework is that script-steps are treated the same no matter whether they start with the keyword Given, And, When or Then. What this means is that you are free to use whatever makes sense for you. You could even have all the steps start with When and Karate won't care.

In fact Cucumber supports the catch-all symbol '*' - instead of forcing you to use Given, When or Then. This is perfect for those cases where it really doesn't make sense - for example the Background section or when you use the def or set syntax. When eyeballing a test-script, think of the * as a 'bullet-point'.

You can read more about the Given-When-Then convention at the Cucumber reference documentation.

Since Karate is based on Cucumber, you can also employ data-driven techniques such as expressing data-tables in test scripts.

Another good thing that Karate inherits is the nice IDE support for Cucumber that IntelliJ and Eclipse have. So you can do things like right-click and run a *.feature file (or scenario) without needing to use a JUnit runner.

With the formalities out of the way, let's dive straight into the syntax.

Setting and Using Variables

def

Set a named variable

# assigning a string value:
Given def myVar = 'world'

# using a variable
Then print myVar

# assigning a number (you can use '*' instead of Given / When / Then)
* def myNum = 5

Note that def will over-write any variable that was using the same name earlier. Keep in mind that the start-up configuration routine could have already initialized some variables before the script even started.

assert

Assert if an expression evaluates to true

Once defined, you can refer to a variable by name. Expressions are evaluated using the embedded JavaScript engine. The assert keyword can be used to assert that an expression returns a boolean value.

Given def color = 'red '
And def num = 5
Then assert color + num == 'red 5'

Everything to the right of the assert keyword will be evaluated as a single expression.

Something worth mentioning here is that you would hardly need to use assert in your test scripts. Instead you would typically use the match keyword, that is designed for performing powerful assertions against JSON and XML response payloads.

print

Log to the console

You can use print to log variables to the console in the middle of a script. All of the text to the right of the print keyword will be evaluated as a single expression (somewhat like assert).

* print 'the value of a is ' + a

'Native' data types

Native data types mean that you can insert them into a script without having to worry about enclosing them in strings and then having to 'escape' double-quotes all over the place. They seamlessly fit 'in-line' within your test script.

JSON

Note that the parser is 'lenient' so that you don't have to enclose all keys in double-quotes.

* def cat = { name: 'Billie', scores: [2, 5] }
* assert cat.scores[1] == 5

When inspecting JSON (or XML) for expected values you are probably better off using match instead of assert.

XML

Given def cat = <cat><name>Billie</name><scores><score>2</score><score>5</score></scores></cat>
# sadly, xpath list indexes start from 1
Then match cat/cat/scores/score[2] == '5'
# but karate allows you to traverse xml like json !!
Then match cat.cat.scores.score[1] == 5

Embedded Expressions

Karate has a very useful JSON 'templating' approach. Variables can be referred to within JSON, for example:

When def ticket = { userId: 'john' }
Then match session == { userId: '#(ticket.userId)' }

So the rule is - if a string value within a JSON (or XML) object declaration is enclosed between #( and ) - it will be evaluated as a JavaScript expression. And any variables which are alive in the context can be used in this expression.

This comes in useful in some cases - and avoids needing to use JavaScript functions or JsonPath expressions to manipulate JSON. So you get the best of both worlds: the elegance of JSON to express complex nested data - while at the same time being able to dynamically plug values (that could also be other JSON object-trees) into a JSON 'template'.

The GraphQL / RegEx Replacement example also demonstrates the usage of 'embedded expressions', look for: '#(query)'. And there are more examples in the Karate Demos.

Multi-Line Expressions

The keywords def, set, match and request take multi-line input as the last argument. This is useful when you want to express a one-off lengthy snippet of text in-line, without having to split it out into a separate file. Here are some examples:

# instead of:
* def cat = <cat><name>Billie</name><scores><score>2</score><score>5</score></scores></cat>

# this is more readable:
* def cat = 
"""
<cat>
    <name>Billie</name>
    <scores>
        <score>2</score>
        <score>5</score>
    </scores>
</cat>
"""
# example of a request payload in-line
Given request 
""" 
<?xml version='1.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:QueryUsageBalance xmlns:ns2="http://www.mycompany.com/usage/V1">
    <ns2:UsageBalance>
        <ns2:LicenseId>12341234</ns2:LicenseId>
    </ns2:UsageBalance>
</ns2:QueryUsageBalance>
</S:Body>
</S:Envelope>
"""

# example of a payload assertion in-line
Then match response ==
"""
{ id: { domain: "DOM", type: "entityId", value: "#ignore" },
  created: { on: "#ignore" }, 
  lastUpdated: { on: "#ignore" },
  entityState: "ACTIVE"
}
"""

table

A simple way to create JSON

Now that we have seen how JSON is a 'native' data type that Karate understands, there is a very nice way to create JSON using Cucumber's support for expressing data-tables.

* table cats =
    | name | age |
    | Bob  | 2   |
    | Wild | 4   |
    | Nyan | 3   |

* match cats == [{name: 'Bob', age: 2}, {name: 'Wild', age: 4}, {name: 'Nyan', age: 3}]

The match keyword is explained later, but it should be clear right away how convenient the table keyword is. JSON can be combined with the ability to call other *.feature files to achieve dynamic data-driven testing in Karate.

JavaScript Functions

JavaScript Functions are also 'native'. And yes, functions can take arguments.
Standard JavaScript syntax rules apply.

ES6 arrow functions are not supported.

* def greeter = function(name){ return 'hello ' + name }
* assert greeter('Bob') == 'hello Bob'

Java Interop

For more complex functions you are better off using the multi-line 'doc-string' approach. This example actually calls into existing Java code, and being able to do this opens up a whole lot of possibilities. The JavaScript interpreter will try to convert types across Java and JavaScript as smartly as possible. For e.g. JS objects become Java Map-s, and Java Bean properties are accessible (and update-able) using dot notation e.g. 'object.name'

* def dateStringToLong =
"""
function(s) {
  var SimpleDateFormat = Java.type("java.text.SimpleDateFormat");
  var sdf = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSZ");
  return sdf.parse(s).time; // '.getTime()' would also have worked instead of '.time'
} 
"""
* assert dateStringToLong("2016-12-24T03:39:21.081+0000") == 1482550761081

More examples of Java interop and how to invoke custom code can be found in the section on Calling Java.

Any JavaScript function in Karate has a variable called karate injected into the runtime, which provides some utility functions, for e.g. logging.

The call keyword provides an alternate way of calling JavaScript functions that have only one argument. The argument can be provided after the function name, without parantheses, which makes things slightly more readable (and less cluttered) especially when the solitary argument is JSON.

* def timeLong = call dateStringToLong '2016-12-24T03:39:21.081+0000'
* assert timeLong == 1482550761081

# a better example, with a JSON argument
* def greeter = function(name){ return 'Hello ' + name.first + ' ' + name.last + '!' }
* def greeting = call greeter { first: 'John', last: 'Smith' }

Reading Files

Reading files is achieved using the read keyword. By default, the file is expected to be in the same folder (package) as the *.feature file. But you can prefix the name with classpath:.

Prefer classpath: when a file is expected to be heavily re-used all across your project. And yes, relative paths will work.

# json
* def someJson = read('some-json.json')
* def moreJson = read('classpath:more-json.json')

# xml
* def someXml = read('../common/my-xml.xml')

# string
* def someString = read('classpath:messages.txt')

# javascript (will be evaluated)
* def someValue = read('some-js-code.js')

# if the js file evaluates to a function, it can be re-used later using the 'call' keyword
* def someFunction = read('classpath:some-reusable-code.js')
* def someCallResult = call someFunction

# the following short-cut is also allowed
* def someCallResult = call read('some-js-code.js')

You can also re-use other *.feature files from test-scripts:

# perfect for all those common authentication or 'set up' flows
* def result = call read('classpath:some-reusable-steps.feature')

If a file does not end in '.json', '.xml', '.js' or '.txt' - it is treated as a stream which is typically what you would need for multipart file uploads.

* def someStream = read('some-pdf.pdf')

Since it is internally implemented as a JavaScript function, you can mix calls to read() freely wherever JavaScript expressions are allowed:

* def someBigString = read('first.txt') + read('second.txt')

Take a look at the Karate Demos for real-life examples of reading files.

Core Keywords

They are url, path, request, method and status.

These are essential HTTP operations, they focus on setting one (non-keyed) value at a time and don't involve any '=' signs in the syntax.

url

Given url 'https://myhost.com/v1/cats'

A URL remains constant until you use the url keyword again, so this is a good place to set-up the 'non-changing' parts of your REST URL-s.

A URL can take expressions, so the approach below is legal. And yes, variables can come from global config.

Given url 'https://' + e2eHostName + '/v1/api'

path

REST-style path parameters. Can be expressions that will be evaluated. Comma delimited values are supported which can be more convenient, and takes care of URL-encoding and appending '/' where needed.

Given path 'documents/' + documentId + '/download'

# this is equivalent to the above
Given path 'documents', documentId, 'download'

# or you can do the same on multiple lines if you wish
Given path 'documents'
And path documentId
And path 'download'

request

In-line JSON:

Given request { name: 'Billie', type: 'LOL' }

In-line XML:

And request <cat><name>Billie</name><type>Ceiling</type></cat>

From a file in the same package. Use the classpath: prefix to load from the classpath instead.

Given request read('my-json.json')

You could always use a variable:

And request myVariable

Defining the request is mandatory if you are using an HTTP method that expects a body such as post. You can always specify an empty body as follows, and force the right Content-Type header by using the header keyword.

Given request ''
And header Content-Type = 'text/html'

method

The HTTP verb - get, post, put, delete, patch, options, head, connect, trace.

Lower-case is fine.

When method post

It is worth internalizing that during test-execution, it is upon the method keyword that the actual HTTP request is issued. Which suggests that the step should be in the When form, for e.g.: When method post. And steps that follow should logically be in the Then form.

For example:

When method get
# the step that immediately follows the above would typically be:
Then status 200

status

This is a shortcut to assert the HTTP response code.

Then status 200

And this assertion will cause the test to fail if the HTTP response code is something else.

See also responseStatus.

Keywords that set key-value pairs

They are param, header, cookie, form field and multipart field.

The syntax will include a '=' sign between the key and the value. The key does not need to be within quotes.

param

Setting query-string parameters:

Given param someKey = 'hello'
And param anotherKey = someVariable

header

One nice thing about the header keyword is that it 'persists' for the duration of the Scenario:. So if you want the same header to be sent for all HTTP requests, just set the header once and all HTTP requests made after that point would have that header. And if you do this within a Background: section, it would apply to all Scenario: sections within the *.feature file.

You can even use functions or expressions:

Given header Authorization = myAuthFunction()
And header transaction-id = 'test-' + myIdString

Because of how easy it is to set HTTP headers, Karate does not provide any special keywords for things like the Accept header. You simply do something like this:

Given path 'some/path'
And request { some: 'data' }
And header Accept = 'application/json'
When method post
Then status 200

If you need headers to be dynamically generated for each HTTP request, that is what configure headers is for.

cookie

Setting a cookie:

Given cookie foo = 'bar'

form field

These would be URL-encoded when the HTTP request is submitted (by the method step).

Given form field foo = 'bar'

multipart field

Use this for building multipart named (form) field requests.

Given multipart field file = read('test.pdf')
And multipart field fileName = 'some-name.pdf'
When method post
Then status 200

When 'multipart' content is involved, the Content-Type header defaults to multipart/form-data. You can over-ride it by using the header keyword before the method step. Look at multipart entity for an example.

multipart entity

This is technically not in the key-value form: multipart field name = 'foo', but logically belongs here in the documentation.

Use this for multipart content items that don't have field-names. Here below is an example that also demonstrates using the multipart/related content-type.

Given path '/v2/documents'
And multipart entity read('foo.json')
And multipart field image = read('bar.jpg')
And header Content-Type = 'multipart/related'
When method post 
Then status 201

SOAP

Since a SOAP request needs special handling, this is the only case where the method step is not used to actually fire the request to the server.

soap action

The name of the SOAP action specified is used as the 'SOAPAction' header. Here is an example which also demonstrates how you could assert for expected values in the response XML.

Given request read('soap-request.xml')
When soap action 'QueryUsageBalance'
Then status 200
And match response /Envelope/Body/QueryUsageBalanceResponse/Result/Error/Code == 'DAT_USAGE_1003'
And match response /Envelope/Body/QueryUsageBalanceResponse == read('expected-response.xml')

Managing Headers, SSL, Timeouts and HTTP Proxy

configure

You can adjust configuration settings for the HTTP client used by Karate using this keyword. The syntax is similar to def but instead of a named variable, you update configuration. Here are the configuration keys supported:

Key Type Description
headers JavaScript Function see configure headers
headers JSON see configure headers
ssl boolean Enable HTTPS calls without needing to configure a trusted certificate or key-store.
ssl string Like above, but force the SSL algorithm to one of these values. (The above form internally defaults to TLS if simply set to true).
connectTimeout integer Set the connect timeout (milliseconds). The default is 0 (which means infinity).
readTimeout integer Set the read timeout (milliseconds). The default is 0 (which means infinity).
proxy string Set the URI of the HTTP proxy to use.
proxy JSON For a proxy that requires authentication, set the uri, username and password. (See example below).

Examples:

# enable ssl (and no certificate is required)
* configure ssl = true

# enable ssl and force the algorithm to TLSv1.2
* configure ssl = 'TLSv1.2'

# time-out if the response is not forthcoming within 10 seconds
* configure readTimeout = 10000

# set the uri of the http proxy server to use
* configure proxy = 'http://my.proxy.host:8080'

# proxy which needs authentication
* configure proxy = { uri: 'http://my.proxy.host:8080', username: 'john', password: 'secret' }

Preparing, Manipulating and Matching Data

One of the most time-consuming parts of writing tests for web-services is traversing the response payload and checking for expected results and data. You can appreciate how Karate makes this simple since you can express payload or expected data in JSON or XML 'natively', either in-line or read from a file. And since you have the option of loading data from files for complex payloads, this has a couple of advantages - you don't have to clutter your test-script, and even better - you can re-use the same data in multiple scenario-s.

Combined with the ease of setting values on and manipulating JSON or XML documents that Karate provides (see set) - setting up test cases for boundary conditions and edge-cases is a simple matter of defining your payload data-object once - and then re-using it with tweaks.

Gone are the days of laboriously creating Java POJO-s or data-objects for every single JSON payload. Even if your payloads are complex, there are plenty of ways you could acquire the JSON or XML that you initially need, for e.g. using WireShark or Fiddler. Even if a service is in early development, you should expect (or demand) documentation from the dev-team (for e.g. in Swagger) which you could refer to.

Once you have a JSON object ready, making an HTTP request is typically accomplished using two or three lines of script. This solves another problem visible in many Java projects that depend on the Apache HTTPClient (or equivalent) - which is a proliferation of 'helper classes' and 'framework utilities' that evolve with every new end-point that is developed. In the long run this actually impedes readability and maintainability of tests, because one has to dig through multiple layers of code (and possibly JAR dependencies) to figure out what is going on. It is also worth mentioning that this kind of 'over-engineered' re-use has the side effect of causing tests to be harder to maintain, for e.g. changes in one of the core 'helper classes' could cause tests in completely unrelated projects to break. And having to make changes in a 'parent' project reduces the velocity of the team.

Writing tests for a new endpoint, is a lot harder in this kind of environment than it needs to be. Not to mention the pain a Java developer will go through when needing to compare two objects with deeply nested fields and collections - you need null-checks everywhere - and some fields may need to be ignored as well.

Even worse is when the POJO-s used in the server-side implementation get 're-used' as part of the test framework. This introduces the risk that changes to POJO-s that could break the end-user experience (such as adding or removing a field) will not be caught by the tests.

match

Payload Assertions / Smart Comparison

The match operation is smart because white-space does not matter, and the order of keys (or data elements) does not matter. Karate is even able to ignore fields you choose - which is very useful when you want to handle server-side dynamically generated fields such as UUID-s, time-stamps, security-tokens and the like.

The match syntax involves a double-equals sign '==' to represent a comparison (and not an assignment '=').

Since match and set go well together, they are both introduced in the examples in the section below.

set

Manipulating Data

Game, set and match - Karate !

Setting values on JSON documents is simple using the set keyword and JsonPath expressions.

* def myJson = { foo: 'bar' }
* set myJson.foo = 'world'
* match myJson == { foo: 'world' }

# add new keys.  you can use pure JsonPath expressions (notice how this is different from the above)
* set myJson $.hey = 'ho'
* match myJson == { foo: 'world', hey: 'ho' }

# and even append to json arrays (or create them automatically)
* set myJson.zee[0] = 5
* match myJson == { foo: 'world', hey: 'ho', zee: [5] }

# nested json ? no problem
* set myJson.cat = { name: 'Billie' }
* match myJson == { foo: 'world', hey: 'ho', zee: [5], cat: { name: 'Billie' } }

# and for match - the order of keys does not matter
* match myJson == { cat: { name: 'Billie' }, hey: 'ho', foo: 'world', zee: [5] }

# you can ignore fields marked with '#ignore'
* match myJson == { cat: '#ignore', hey: 'ho', foo: 'world', zee: [5] }

XML and XPath works just like you'd expect.

* def cat = <cat><name>Billie</name></cat>
* set cat /cat/name = 'Jean'
* match cat / == <cat><name>Jean</name></cat>

# you can even set whole fragments of xml
* def xml = <foo><bar>baz</bar></foo>
* set xml/foo/bar = <hello>world</hello>
* match xml == <foo><hello>world</hello></foo>

Ignore or Validate

When expressing expected results (in JSON or XML) you can mark some fields to be ignored when the match (comparison) is performed. You can even use a regular-expression so that instead of checking for equality, Karate will just validate that the actual value conforms to the expected pattern.

This means that even when you have dynamic server-side generated values such as UUID-s and time-stamps appearing in the response, you can still assert that the full-payload matched in one step.

* def cat = { name: 'Billie', type: 'LOL', id: 'a9f7a56b-8d5c-455c-9d13-808461d17b91' }
* match cat == { name: '#ignore', type: '#regex[A-Z]{3}', id: '#uuid' }
# this will fail
# * match cat == { name: '#ignore', type: '#regex.{2}', id: '#uuid' }	

The supported markers are the following:

Marker Description
#ignore Skip comparison for this field
#null Expects actual value to be null
#notnull Expects actual value to be not-null
#array Expects actual value to be a JSON array
#object Expects actual value to be a JSON object
#boolean Expects actual value to be a boolean true or false
#number Expects actual value to be a number
#string Expects actual value to be a string
#uuid Expects actual (string) value to conform to the UUID format
#regexSTR Expects actual (string) value to match the regular-expression 'STR' (see examples above)
#?EXPR Expects the JavaScript expression 'EXPR' to evaluate to true (see examples below)

'Self' Validation Expressions

The special 'predicate' marker in the last row of the table above is an interesting one. It is best explained via examples.

Observe how the value of the field being validated (or 'self') is injected into the 'underscore' expression variable: '_'

* def date = { month: 3 }
* match date == { month: '#? _ > 0 && _ < 13' }

What is even more interesting is that expressions can refer to variables:

* def date = { month: 3 }
* def min = 1
* def max = 12
* match date == { month: '#? _ >= min && _ <= max' }

And functions work as well ! You can imagine how you could evolve a nice set of utilities that validate all your domain objects.

* def date = { month: 3 }
* def isValidMonth = function(m) { return m >= 0 && m <= 12 }
* match date == { month: '#? isValidMonth(_)' }

You can actually refer to any JsonPath on the document via $ and perform cross-field or conditional validations ! This example uses the match contains syntax, and situations where this comes in useful will be apparent when we discuss match each.

Given def temperature = { celsius: 100, fahrenheit: 212 }
Then match temperature contains { fahrenheit: '#? _ == $.celsius * 1.8 + 32' }
# when validation logic is an 'equality' check, an embedded expression works better
Then match temperature == { celsius: '#number', fahrenheit: '#($.celsius * 1.8 + 32)' }

match for Text and Streams

# when the response is plain-text
Then match response == 'Health Check OK'

# when the response is a file (stream)
Then match response == read('test.pdf')

# incidentally, match and assert behave exactly the same way for strings
* def hello = 'Hello World!'
* match hello == 'Hello World!'
* assert hello == 'Hello World!'

Checking if a string is contained within another string is a very common need and match (name) contains works just like you'd expect:

* def hello = 'Hello World!'
* match hello contains 'World'

match header

Since asserting against header values in the response is a common task - match header has a special meaning. It short-cuts to the pre-defined variable responseHeaders and reduces some complexity - because strictly, HTTP headers are a 'multi-valued map' or a 'map of lists' - the Java-speak equivalent being Map<String, List<String>>.

# so after a http request
Then match header Content-Type == 'application/json'
# 'contains' works as well
Then match header Content-Type contains 'application'

Note the extra convenience where you don't have to enclose the LHS key in quotes.

You can always directly access the variable called responseHeaders if you wanted to do more checks, but you typically won't need to.

Matching Sub-Sets of JSON Keys and Arrays

match contains

JSON Keys

In some cases where the response JSON is wildly dynamic, you may want to only check for the existence of some keys. And match (name) contains is how you can do so:

* def foo = { bar: 1, baz: 'hello', ban: 'world' }

* match foo contains { bar: 1 }
* match foo contains { baz: 'hello' }
* match foo contains { bar:1, baz: 'hello' }
# this will fail
# * match foo == { bar:1, baz: 'hello' }

JSON Arrays

This is a good time to deep-dive into JsonPath, which is perfect for slicing and dicing JSON into manageable chunks. It is worth taking a few minutes to go through the documentation and examples here: JsonPath Examples.

Here are some example assertions performed while scraping a list of child elements out of the JSON below. Observe how you can match the result of a JsonPath expression with your expected data.

Given def cat = 
"""
{
  name: 'Billie',
  kittens: [
      { id: 23, name: 'Bob' },
      { id: 42, name: 'Wild' }
  ]
}
"""
# normal 'equality' match. note the wildcard '*' in the JsonPath (returns an array)
Then match cat.kittens[*].id == [23, 42]

# when inspecting a json array, 'contains' just checks if the expected items exist
# and the size and order of the actual array does not matter
Then match cat.kittens[*].id contains 23
Then match cat.kittens[*].id contains [42]
Then match cat.kittens[*].id contains [23, 42]
Then match cat.kittens[*].id contains [42, 23]

# and yes, you can assert against nested objects within JSON arrays !
Then match cat.kittens contains [{ id: 42, name: 'Wild' }, { id: 23, name: 'Bob' }]

# ... and even ignore fields at the same time !
Then match cat.kittens contains { id: 42, name: '#string' }

It is worth mentioning that to do the equivalent of the last line in Java, you would typically have to traverse 2 Java Objects, one of which is within a list, and you would have to check for nulls as well.

When you use Karate, all your data assertions can be done in pure JSON and without needing a thick forest of companion Java objects. And when you read your JSON objects from (re-usable) files, even complex response payload assertions can be accomplished in just a single line of Karate-script.

match contains only

For those cases where you need to assert that all array elements are present but in any order you can do this:

* def data = { foo: [1, 2, 3] }
* match data.foo contains 1
* match data.foo contains [2]
* match data.foo contains [3, 2]
* match data.foo contains only [3, 2, 1]
* match data.foo contains only [2, 3, 1]
# this will fail
# * match data.foo contains only [2, 3]

Validate every element in a JSON array

match each

Karate has syntax sugar that can iterate over all elements in a JSON array. Here's how it works:

* def data = { foo: [{ bar: 1, baz: 'a' }, { bar: 2, baz: 'b' }, { bar: 3, baz: 'c' }]}

* match each data.foo == { bar: '#number', baz: '#string' }

# and you can use 'contains' the way you'd expect
* match each data.foo contains { bar: '#number' }
* match each data.foo contains { bar: '#? _ != 4' }

# some more examples of validation macros
* match each data.foo contains { baz: "#? _ != 'z'" }
* def isAbc = function(x) { return x == 'a' || x == 'b' || x == 'c' }
* match each data.foo contains { baz: '#? isAbc(_)' }

Here is a contrived example that uses match each, contains and the #? 'predicate' marker to validate that the value of totalPrice is always equal to the roomPrice of the first item in the roomInformation array.

Given def json =
"""
{
  "hotels": [
    { "roomInformation": [{ "roomPrice": 618.4 }], "totalPrice": 618.4  },
    { "roomInformation": [{ "roomPrice": 679.79}], "totalPrice": 679.79 }
  ]
}
"""
Then match each json.hotels contains { totalPrice: '#? _ == $.roomInformation[0].roomPrice' }
# when validation logic is an 'equality' check, an embedded expression works better
Then match each json.hotels == { roomInformation: '#array', totalPrice: '#($.roomInformation[0].roomPrice)' }

get

By now, it should be clear that JsonPath can be very useful for extracting JSON 'trees' out of a given object. The get keyword allows you to save the results of a JsonPath expression for later use - which is especially useful for dynamic data-driven testing. For example:

* def cat = 
"""
{
  name: 'Billie',
  kittens: [
      { id: 23, name: 'Bob' },
      { id: 42, name: 'Wild' }
  ]
}
"""
* def kitnums = get cat.kittens[*].id
* match kitnums == [23, 42]
* def kitnames = get cat.kittens[*].name
* match kitnames == ['Bob', 'Wild']

Special Variables

response

After every HTTP call this variable is set with the response and is available until the next HTTP request over-writes it.

The response is automatically available as a JSON, XML or String object depending on what the response contents are.

As a short-cut, when running JsonPath expressions - '$' represents the response. This has the advantage that you can use pure JsonPath and be more concise. For example:

# the three lines below are equivalent
Then match response $ == { name: 'Billie' }
Then match response == { name: 'Billie' }
Then match $ == { name: 'Billie' }

# the three lines below are equivalent
Then match response.name == 'Billie'
Then match response $.name == 'Billie'
Then match $.name == 'Billie'

And similarly for XML and XPath, '/' represents the response

# the four lines below are equivalent
Then match response / == <cat><name>Billie</name></cat>
Then match response/ == <cat><name>Billie</name></cat>
Then match response == <cat><name>Billie</name></cat>
Then match / == <cat><name>Billie</name></cat> 

# the three lines below are equivalent
Then match response /cat/name == 'Billie'
Then match response/cat/name == 'Billie'
Then match /cat/name == 'Billie'

cookies

The cookies variable is set upon any HTTP response and is a map-like (or JSON-like) object. It can be easily inspected or used in expressions.

Then assert cookies['my.key'] == 'someValue'

As a convenience, cookies from the previous response are collected and passed as-is as part of the next HTTP request. This is what is normally expected and simulates a browser - which makes it easy to script things like HTML-form based authentication into test-flows.

Of course you can manipulate cookies or even set it to null if you wish - at any point within a test script.

responseHeaders

See also match header which is what you would normally need.

But if you need to use values in the response headers - they will be in a variable named responseHeaders. Note that it is a 'map of lists' so you will need to do things like this:

* def contentType = responseHeaders['Content-Type'][0]

responseStatus

You would normally only need to use the status keyword. But if you really need to use the HTTP response code in an expression or save it for later, you can get it as an integer:

* def uploadStatusCode = responseStatus

responseTime

The response time (in milliseconds) for every HTTP request would be available in a variable called responseTime. You can use this to assert that the response was returned within the expected time like so:

When method post
Then status 201
And assert responseTime < 1000

HTTP Header Manipulation

configure headers

Custom header manipulation for every HTTP request is something that Karate makes very easy and pluggable. For every HTTP request made from Karate, the internal flow is as follows:

  • did we configure the value of headers ?
  • if so, is the configured value a JavaScript function ?
    • if so, a call is made to that function.
    • did the function invocation return a map-like (or JSON) object ?
      • all the key-value pairs are added to the HTTP headers.
  • or is the configured value a JSON object ?
    • all the key-value pairs are added to the HTTP headers.

This makes setting up of complex authentication schemes for your test-flows really easy. It typically ends up being a one-liner that appears in the Background section at the start of your test-scripts. You can re-use the function you create across your whole project.

Here is an example JavaScript function that uses some variables in the context (which have been possibly set as the result of a sign-in) to build the Authorization header.

In the example below, note the use of the karate object for getting the value of a dynamic variable. This is preferred because it takes care of situations such as if the value is 'undefined' in JavaScript.

function() {
  var out = { // hard-coded here, but you can dynamically generate these values if needed
    txid_header: '1e2bd51d-a865-4d37-9ac9-c345dc59119b',
    ip_header: '123.45.67.89',    
  };
  var authString = '';
  var authToken = karate.get('authToken'); // use the 'karate' helper to do a 'safe' get of a 'dynamic' variable
  if (authToken) { // and if 'authToken' is not null ... 
    authString = ',auth_type=MyAuthScheme'
        + ',auth_key=' + authToken.key
        + ',auth_user=' + authToken.userId
        + ',auth_project=' + authToken.projectId;
  }
  // the 'appId' variable here is expected to have been set via config / init and will never change
  out.Authorization = 'My_Auth app_id=' + appId + authString;
  return out;
}

Assuming the above code is in a file called my-headers.js, the next section on calling other feature files shows how it looks like in action at the beginning of a test script.

Notice how once the authToken variable is initialized, it is used by the above function to generate headers for every HTTP call made as part of the test flow.

If a few steps in your flow need to temporarily change (or completely bypass) the currently-set header-manipulation scheme, just update the headers configuration value or set it to null in the middle of a script.

Code Reuse / Common Routines

call

In any complex testing endeavour, you would find yourself needing 'common' code that needs to be re-used across multiple test scripts. A typical need would be to perform a 'sign in', or create a fresh user as a pre-requisite for the scenarios being tested.

There are two types of code that can be call-ed. *.feature files and JavaScript functions.

Calling other *.feature files

When you have a sequence of HTTP calls that need to be repeated for multiple test scripts, Karate allows you to treat a *.feature file as a re-usable unit. You can also pass parameters into the *.feature file being called, and extract variables out of the invocation result.

Here is an example of how to call another feature file, using the read function:

Feature: some feature

Background:
* configure headers = read('classpath:my-headers.js')
* def signin = call read('classpath:my-signin.feature') { username: 'john', password: 'secret' }
* def authToken = signin.authToken

Scenario: some scenario
# main test steps

The contents of my-signin.feature are shown below. A few points to note:

  • Karate passes all context 'as-is' into the feature file being invoked. This means that all your config variables and configure settings would be available to use, for example loginUrlBase in the example below.
  • You can add (or over-ride) variables by passing a call 'argument' as shown above. Only one JSON argument is allowed, but this does not limit you in any way as you can use any complex JSON structure. You can even initialize the JSON in a separate step and pass it by name, especially if it is complex. Observe how using JSON for parameter-passing makes things super-readable.
  • All variables that were defined (using def) in the 'called' script would be returned as 'keys' within a JSON-like object. In the example above you can see that the JSON 'envelope' returned - is assigned to the variable named signin. And then getting hold of any data that was generated by the 'called' script is as simple as accessing it by name, for example signin.authToken as shown above. This design has the following advantages:
    • 'called' Karate scripts don't need to use any special keywords to 'return' data and can behave like 'normal' Karate tests in 'stand-alone' mode if needed
    • the data 'return' mechanism is 'safe', there is no danger of the 'called' script over-writing any variables in the 'calling' (or parent) script
    • the need to explicitly 'unpack' variables by name from the returned 'envelope' keeps things readable and maintainable in the 'caller' script
Feature: here are the contents of 'my-signin.feature'

Scenario:

Given url loginUrlBase
And request { userId: '#(username)', userPass: '#(password)' }
When method post
Then status 200
And def authToken = response

# second HTTP call, to get a list of 'projects'
Given path 'users', authToken.userId, 'projects'
When method get
Then status 200
# logic to 'choose' first project
And set authToken.projectId = response.projects[0].projectId;

The above example actually makes two HTTP requests - the first is a standard 'sign-in' POST and then (for illustrative purposes) another HTTP call (a GET) is made for retrieving a list of projects for the signed-in user, the first one is 'chosen' and added to the returned 'auth token' JSON object.

So you get the picture, any kind of complicated 'sign-in' flow can be scripted and re-used.

Do look at the documentation and example for configure headers also as it goes hand-in-hand with call. In the above example, the end-result of the call to my-signin.feature resulted in the authToken variable being initialized. Take a look at how the configure headers example uses the authToken variable.

Data-Driven Features

If the argument passed to the call of a *.feature file is a JSON array, something interesting happens. The feature is invoked for each item in the array. Each array element is expected to be a JSON object, and for each object - the behavior will be as described above.

But this time, the return value from the call step will be a JSON array of the same size as the input array. And each element of the returned array will be the 'envelope' of variables that resulted from each iteration where the *.feature got invoked.

Here is an example that combines the table keyword with calling a *.feature. Observe how the get keyword is used to 'distill' the result array of variable 'envelopes' into an array consisting only of response payloads.

* table kittens = 
    | name     | age |
    | Bob      | 2   |
    | Wild     | 1   |
    | Nyan     | 3   |

* def result = call read('cat-create.feature') kittens
* def created = get result[*].response
* match each created == { id: '#number', name: '#string', age: '#number' }
* match created[*].name contains only ['Bob', 'Wild', 'Nyan']

And here is how cat-create.feature could look like:

@ignore
Feature:

Scenario:

Given url someUrlFromConfig
And path 'cats'
And request { name: '#(name)', age: '#(age)' }
When method post
Then status 200

If you replace the table with perhaps a JavaScript function call that gets some JSON data from some data-source, you can imagine how you could go about dynamic data-driven testing.

Although it is just a few lines of code, take time to study the above example carefully. It is a great example of how to effectively use the unique combination of Cucumber and JsonPath that Karate provides.

Calling JavaScript Functions

Examples of defining and using JavaScript functions appear in earlier sections of this document. Being able to define and re-use JavaScript functions is a powerful capability of Karate. For example, you can:

  • call re-usable functions that take complex data as an argument and return complex data that can be stored in a variable
  • call and interoperate with Java code if needed
  • share and re-use test utilities or 'helper' functionality across your organization

In real-life scripts, you would typically also use this capability of Karate to configure headers where the specified JavaScript function uses the variables that result from a sign in to manipulate headers for all subsequent HTTP requests.

The karate object

A JavaScript function invoked with call has access to a utility object in a variable named: karate. This provides the following methods:

  • karate.set(key, value) - sets the value of a variable (immediately), which may be needed in case any other routines (such as the configured headers) depend on that variable
  • karate.get(key) - get the value of a variable by name (or JsonPath expression), if not found - this returns null which is easier to handle in JavaScript (than undefined).
  • karate.log(... args) - log to the same logger being used by the parent process
  • karate.env - gets the value (read-only) of the environment property 'karate.env', and this is typically used for bootstrapping configuration
  • karate.properties[key] - get the value of any Java system-property by name, useful for advanced custom configuration
  • karate.configure(key, value) - does the same thing as the configure keyword, and a very useful example is to do karate.configure('connectTimeout', 5000); in karate-config.js - which has the 'global' effect of not wasting time if a connection cannot be established within 5 seconds
  • karate.call(fileName, [arg]) - invoke a *.feature file or a JavaScript function the same way that call works (with an optional solitary argument)

Rules for Passing Data to the JavaScript Function

Only one argument is allowed. But this does not limit you in any way, because similar to how you can call *.feature files, you can pass a whole JSON object as the argument. In the case of the call of a JavaScript function, you can also pass a JSON array or a primitive (string, number, boolean) as the solitary argument, and the function implementation is expected to handle whatever is passed.

Return types

Naturally, only one value can be returned. But again, you can return a JSON object. There are two things that can happen to the returned value.

Either - it can be assigned to a variable like so.

* def returnValue = call myFunction

Or - if a call is made without an assignment, and if the function returns a map-like object, it will add each key-value pair returned as a new variable into the execution context.

# while this looks innocent ...
# ... behind the scenes, it could be creating (or over-writing) a bunch of variables !
* call someFunction

While this sounds dangerous and should be used with care (and limits readability), the reason this feature exists is to quickly set (or over-write) a bunch of config variables when needed. In fact, this is the mechanism used when karate-config.js is processed on start-up.

You can invoke a function in a re-usable file using this short-cut.

* call read('my-function.js')

HTTP Basic Authentication Example

This should make it clear why Karate does not provide 'out of the box' support for any particular HTTP authentication scheme. Things are designed so that you can plug-in what you need, without needing to compile Java code. You get to choose how to manage your environment-specific configuration values such as user-names and passwords.

First the JavaScript file, basic-auth.js:

function(creds) {
  var temp = creds.username + ':' + creds.password;
  var Base64 = Java.type("java.util.Base64");
  var encoded = Base64.getEncoder().encodeToString(temp.bytes);
  return 'Basic ' + encoded;
}

And here's how it works in a test-script. Note that you need to do this only once within a Scenario:, perhaps at the beginning, or within the Background: section.

* header Authorization = call read('basic-auth.js') { username: 'john', password: 'secret' }

Calling Java

There are examples of calling JVM classes in the section on Java Interop.

Calling any Java code is that easy. Given this custom, user-defined Java class:

package com.mycompany;

import java.util.HashMap;
import java.util.Map;

public class JavaDemo {    
    
    public Map<String, Object> doWork(String fromJs) {
        Map<String, Object> map = new HashMap<>();
        map.put("someKey", "hello " + fromJs);
        return map;
    }

    public static String doWorkStatic(String fromJs) {
        return "hello " + fromJs;
    }   

}

This is how it can be called from a test-script, and yes, even static methods can be invoked:

* def doWork =
"""
function(arg) {
  var JavaDemo = Java.type('com.mycompany.JavaDemo');
  var jd = new JavaDemo();
  return jd.doWork(arg);  
}
"""
# in this case the solitary 'call' argument is of type string
* def result = call doWork 'world'
* assert result.someKey == 'hello world'

# using a static method - observe how java interop is truly seamless !
* def JavaDemo = Java.type('com.intuit.karate.junit4.syntax.JavaDemo')
* def result = JavaDemo.doWorkStatic('world')
* assert result == 'hello world'

Advanced / Tricks

GraphQL / RegEx replacement example

As a demonstration of Karate's power and flexibility, here is an example that reads a GraphQL string (which could be from a file) and manipulates it to build custom dynamic queries and filter criteria.

Here we have this JavaScript utlity function replacer.js that uses a regular-expression to replace-inject a criteria expression into the right place, given a GraphQL query.

function(args) {
  var query = args.query;
  karate.log('before replacement: ', query);
  // the RegExp object is standard JavaScript
  var regex = new RegExp('\\s' + args.field + '\\s*{');
  karate.log('regex: ', regex);
  query = query.replace(regex, ' ' + args.field + '(' + args.criteria + ') {');
  karate.log('after replacement: ', query);
  return query; 
} 

Once the function is declared, observe how calling it and performing the replacement is an elegant one-liner.

* def replacer = read('replacer.js')

# this 'base GraphQL query' would also likely be read from a file in real-life
* def query = 'query q { company { taxAgencies { edges { node { id, name } } } } }'

# the next line is where the criteria is injected using the regex function
* def query = call replacer { query: '#(query)', field: 'taxAgencies', criteria: 'first: 5' }

# and here is the result of the 'replace'
* assert query == 'query q { company { taxAgencies(first: 5) { edges { node { id, name } } } } }'

Given request { query: '#(query)' }
And header Accept = 'application/json'
When method post
Then status 200

* def agencies = $.data.company.taxAgencies.edges
* match agencies[0].node == { id: '#uuid', name: 'John Smith' }

Multi-line Comments

How do I 'block-comment' multiple lines ?

One limitation of the Cucumber / Gherkin format is the lack of a way to denote multi-line comments. This can be a pain during development when you want to comment out whole blocks of script. Fortunately there is a reasonable workaround for this.

Of course, if your IDE supports the Gherkin / Cucumber format, nothing like it. But since Gherkin comments look exactly like comments in *.properties files, all you need to do is tell your IDE that *.feature files should be treated as *.properties files.

And once that is done, if you hit CTRL + '/' (or Command + '/') with multiple lines selected - you can block-comment or un-comment them all in one-shot.

Cucumber Tags

Cucumber has a great way to sprinkle meta-data into test-scripts - which gives you some interesting options when running tests in bulk. The most common use-case would be to partition your tests into 'smoke', 'regression' and the like - which enables being able to selectively execute a sub-set of tests.

The documentation on how to run tests via the command line has an example of how to use tags to decide which tests to not run (or ignore). The Cucumber wiki has more information on tags.

Dynamic Port Numbers

In situations where you start an (embedded) application server as part of the test set-up phase, a typical challenge is that the HTTP port may be determined at run-time. So how can you get this value injected into the Karate configuration ?

It so happens that the karate object has a field called properties which can read a Java system-property by name like this: properties['myName']. Since the karate object is injected within karate-config.js on start-up, it is a simple and effective way for other processes within the same JVM to pass configuration values into Karate at run-time.

You can look at the Wiremock based unit-test code of Karate to see how this can be done.

The Karate Demos use a similar approach for determining the URL for each test.

Data Driven Tests

The Cucumber Way

Cucumber has a concept of Scenario Outlines where you can re-use a set of data-driven steps and assertions, and the data can be declared in a very user-friendly fashion. Observe the usage of Scenario Outline: instead of Scenario:, and the new Examples: section.

This example is a port of the REST-Assured (and TestNG) tutorial by @Bas Dijkstra and you should take a minute to compare the below code with the original.

Feature: karate answers 2

Background:
* url 'http://localhost:8080'

Scenario Outline: given circuit name, validate country

Given path 'api/f1/circuits/<name>.json'
When method get
Then match $.MRData.CircuitTable.Circuits[0].Location.country == '<country>'

Examples:
| name   | country  |
| monza  | Italy    |
| spa    | Belgium  |
| sepang | Malaysia |

Scenario Outline: given race number, validate number of pitstops for Max Verstappen in 2015

Given path 'api/f1/2015/<race>/drivers/max_verstappen/pitstops.json'
When method get
Then assert response.MRData.RaceTable.Races[0].PitStops.length == <stops>

Examples:
| race | stops |
| 1    | 1     |
| 2    | 3     |
| 3    | 2     |
| 4    | 2     |

This is great for testing boundary conditions against a single end-point, with the added bonus that your test becomes even more readable. This approach can certainly enable product-owners or domain-experts who are not programmer-folk, to review, and even collaborate on test-scenarios and scripts.

The Karate Way

The limitation of the Cucumber Scenario Outline: is that the number of rows in the Examples: is fixed. But take a look at how Karate can loop over a *.feature file for each object in a JSON array - which gives you dynamic data-driven testing, if you need it.

About

Web-Services Testing Made Simple

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 91.6%
  • Gherkin 7.8%
  • JavaScript 0.6%