Skip to content

Awesome-LLM-Prompt-Optimization: a curated list of advanced prompt optimization and tuning methods in Large Language Models

Notifications You must be signed in to change notification settings

jxzhangjhu/Awesome-LLM-Prompt-Optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 

Repository files navigation

Awesome-LLM-Prompt-Optimization


Awesome License: MIT Made With Love

This repo aims to record advanced papers of LLM prompt tuning and automatic optimization (after 2022).

We strongly encourage the researchers that want to promote their fantastic work to the LLM prompt optimization to make pull request to update their paper's information!


Contents


LLM Optimization

Black-Box Prompt Optimization: Aligning Large Language Models without Model Training
Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, Minlie Huang
arXiv 2023. [Paper] [Github]
7 Nov 2023

Language Model Decoding as Direct Metrics Optimization
Haozhe Ji, Pei Ke, Hongning Wang, Minlie Huang
arXiv 2023. [Paper]
2 Oct 2023

Large Language Models as Evolutionary Optimizers
Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, Yew-Soon Ong
arXiv 2023 [Paper]
29 Oct 2023

OptiMUS: Optimization Modeling Using MIP Solvers and large language models
Ali AhmadiTeshnizi, Wenzhi Gao, Madeleine Udell
arXiv 2023. [Paper] [Github]
9 Oct 2023

PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization
Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P. Xing, Zhiting Hu
arXiv 2023. [Paper]
25 Oct 2023

Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
Eric Zelikman, Eliana Lorch, Lester Mackey, Adam Tauman Kalai
arXiv 2023. [Paper]
3 Oct 2023

Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution \ Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, Tim Rocktäschel
arXiv 2023. [Paper]
28 Sep 2023

Connecting large language models with evolutionary algorithms yields powerful prompt optimizers
Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, Yujiu Yang
arXiv 2023. [Paper]
15 Sep 2023

Large Language Models as Optimizers (OPRO)
Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen
arXiv 2023. [Paper]
7 Sep 2023

Automatic Prompt Optimization with "Gradient Descent" and Beam Search (APO)
Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, Michael Zeng
EMNLP 2023. [Paper][Github]
4 May 2023

Large Language Models Are Human-Level Prompt Engineers (APE)
Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, Jimmy Ba
ICLR 2023. [Paper][Github]
3 Nov 2022

Automatic Engineering of Long Prompts
Cho-Jui Hsieh, Si Si, Felix X. Yu, Inderjit S. Dhillon
arXiv 2023. [Paper]
16 Nov 2023

Prompt Optimisation with Random Sampling
Yao Lu, Jiayi Wang, Sebastian Riedel, Pontus Stenetorp
arXiv 2023. [Paper][Github]
16 Nov 2023

Mixture-of-Experts in Prompt Optimization
Anonymous authors ICLR 2024 submission. [Paper]
Oct 2024

Prompt Engineering a Prompt Engineer
Anonymous authors ICLR 2024 submission. [Paper]
Oct 2024

Fine-tuning Methods

Tuna: Instruction Tuning using Feedback from Large Language Models
Haoran Li, Yiran Liu, Xingxing Zhang, Wei Lu, Furu Wei
EMNLP 2023. [Paper][Github]
20 Oct 2023

Programming

DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines
Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, Christopher Potts
arXiv 2023. [Paper][Github]
Oct 2023

Human Perference and Feedback

Eliciting Human Preferences with Language Models
Belinda Z. Li, Alex Tamkin, Noah Goodman, Jacob Andreas
arXiv 2023. [Paper][Github]
17 Oct 2023

Ensemble Methods

Promptboosting: Black-box text classification with ten forward passes
Bairu Hou, Joe O’Connor, Jacob Andreas, Shiyu Chang, Yang Zhang
ICML 2023. [Paper][Github]
23 Jan 2023

Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine
Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King, Jonathan Larson, Yuanzhi Li, Weishung Liu, Renqian Luo, Scott Mayer McKinney, Robert Osazuwa Ness, Hoifung Poon, Tao Qin, Naoto Usuyama, Chris White, Eric Horvitz
arXiv 2023. [Paper]
28 Nov 2023

Reinforcement Learning

Eureka: Human-Level Reward Design via Coding Large Language Models
Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar
arXiv 2023. [Paper][Github]
19 Oct 2023

Query-Dependent Prompt Evaluation and Optimization with Offline Inverse RL
Hao Sun, Alihan Hüyük, Mihaela van der Schaar
arXiv 2023. [Paper][Github]
13 Sep 2023

Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization
Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese
arXiv 2023. [Paper]
4 Aug 2023

TEMPERA: Test-Time Prompting via Reinforcement Learning
Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, Joseph E. Gonzalez
arXiv 2023. [Paper][Github]
21 Nov 2022

RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning
Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song, Eric P. Xing, Zhiting Hu
EMNLP 2022. [Paper][Github]
25 May 2022

Black-box Prompt Learning for Pre-trained Language Models
Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, Yong Lin, Xiao Zhou, Tong Zhang
TMLR 2023. [Paper][Github]
22 Jan 2022

Gradient-free Methods

PROPANE: Prompt design as an inverse problem
Rimon Melamed, Lucas H. McCabe, Tanay Wakhare, Yejin Kim, H. Howie Huang, Enric Boix-Adsera
arXiv 2023. [Paper] [Github]
13 Nov 2023

Survival of the Most Influential Prompts: Efficient Black-Box Prompt Search via Clustering and Pruning
Han Zhou, Xingchen Wan, Ivan Vulić, Anna Korhonen
EMNLP 2023. [Paper] [Github]
19 Oct 2023

FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language Models
Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, Holger R. Roth
arXiv 2023. [Paper]
2 Oct 2023

Language Models as Black-Box Optimizers for Vision-Language Models
Shihong Liu, Samuel Yu, Zhiqiu Lin, Deepak Pathak, Deva Ramanan
arXiv 2023. [Paper][Github]
12 Sep 2023

InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models
Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, Tianyi Zhou
arXiv 2023. [Paper] [Github]
5 Jun 2023

BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning
Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek Lim, Geunyoung Jung, Jiyoung Jung, Hosik Choi, Kyungwoo Song
CVPR 2023. [Paper][Github]
26 Mar 2023

GrIPS: Gradient-free, Edit-based Instruction Search for Prompting Large Language Models
Archiki Prasad, Peter Hase, Xiang Zhou, Mohit Bansal
EACL 2023. [Paper][Github]
Mar 14 2022

Black-Box Tuning for Language-Model-as-a-Service
Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, Xipeng Qiu
ICML 2022. [Paper][Github]
10 Jan 2022

BBTv2: towards a gradient-free future with large language models
Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, Xipeng Qiu \ EMNLP 2022. [Paper] [Github]
7 Dec 2022

In-Context Learning

Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data
KaShun Shum, Shizhe Diao, Tong Zhang
arXiv 2023. [Paper][Github]
24 Feb 2023

Automatic Chain of Thought Prompting in Large Language Models
Zhuosheng Zhang, Aston Zhang, Mu Li, Alex Smola
ICLR 2023. [Paper][Github]
7 Oct 2022

Active Example Selection for In-Context Learning
Yiming Zhang, Shi Feng, Chenhao Tan
EMNLP 2022. [Paper][Github]
8 Nov 2022

Selective Annotation Makes Language Models Better Few-Shot Learners
Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, Tao Yu
ICLR 2023. [Paper][Github]
5 Sep 2022

Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, Pontus Stenetorp
ACL 2022. [Paper]
3 Mar 2022

Learning To Retrieve Prompts for In-Context Learning
Ohad Rubin, Jonathan Herzig, Jonathan Berant
NAACL-HLT 2022. [Paper][Github]
16 Dec 2021

Bayesian Optimization

Large Language Models to Enhance Bayesian Optimization
ICLR 2024 Conference Submission8133 Authors. [Paper]
23 Sep 2023

Bayesian Optimization of Catalysts With In-context Learning
Mayk Caldas Ramos, Shane S. Michtavy, Marc D. Porosoff, Andrew D. White
arXiv 2023. [Paper] [Github]
11 Apr 2023

About

Awesome-LLM-Prompt-Optimization: a curated list of advanced prompt optimization and tuning methods in Large Language Models

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •