Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 2 additions & 10 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,17 +18,14 @@ on:
- 'Project.toml'
jobs:
test:
name: Julia ${{ matrix.version }} - MOI ${{ matrix.moi-version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }}
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} - ${{ github.event_name }}
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
moi-version:
- '0.9'
- '0.10'
version:
- '1'
- '1.0'
- '1.6'
os:
- ubuntu-latest
- macOS-latest
Expand All @@ -40,11 +37,6 @@ jobs:
with:
version: ${{ matrix.version }}
arch: ${{ matrix.arch }}
- name: "Install MOI version"
shell: julia --color=yes --project=. {0}
run: |
using Pkg
Pkg.add(Pkg.PackageSpec(; name="MathOptInterface", version="${{ matrix.moi-version }}"))
- uses: actions/cache@v1
env:
cache-name: cache-artifacts
Expand Down
4 changes: 2 additions & 2 deletions .github/workflows/docs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,8 @@ jobs:
- uses: actions/checkout@v2
- uses: julia-actions/setup-julia@latest
with:
# Build documentation on Julia 1.0
version: '1.0'
# Build documentation on Julia LTS
version: '1.6'
- name: Install dependencies
run: julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd())); Pkg.instantiate()'
- name: Build and deploy
Expand Down
17 changes: 9 additions & 8 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "Convex"
uuid = "f65535da-76fb-5f13-bab9-19810c17039a"
version = "0.14.18"
version = "0.15.0-DEV"

[deps]
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
Expand All @@ -14,20 +14,21 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[compat]
AbstractTrees = "0.2, 0.3"
BenchmarkTools = "^0.4, 0.5, 0.6, 0.7, 1.0"
BenchmarkTools = "1"
ECOS = "1"
GLPK = "1"
LDLFactorizations = "0.8.1"
MathOptInterface = "0.9, 0.10"
OrderedCollections = "^1.0"
julia = "^1.0"
MathOptInterface = "1"
OrderedCollections = "1"
SCS = "1"
julia = "1.6"

[extras]
ECOS = "e2685f51-7e38-5353-a97d-a921fd2c8199"
GLPK = "60bf3e95-4087-53dc-ae20-288a0d20c6a6"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["ECOS", "GLPK", "LinearAlgebra", "Random", "SCS", "Statistics", "Test"]
test = ["ECOS", "GLPK", "Random", "SCS", "Statistics"]
2 changes: 1 addition & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -21,4 +21,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[compat]
Documenter = "0.27"
MathOptInterface = "0.10"
MathOptInterface = "1"
2 changes: 1 addition & 1 deletion docs/examples_literate/general_examples/basic_usage.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ end

using SCS
## passing in verbose=0 to hide output from SCS
solver = () -> SCS.Optimizer(verbose=0)
solver = MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0)

# ### Linear program
#
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ p.constraints += a1' * x_c + r * norm(a1, 2) <= b[1];
p.constraints += a2' * x_c + r * norm(a2, 2) <= b[2];
p.constraints += a3' * x_c + r * norm(a3, 2) <= b[3];
p.constraints += a4' * x_c + r * norm(a4, 2) <= b[4];
solve!(p, () -> SCS.Optimizer(verbose=0))
solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
p.optval

# Generate the figure
Expand Down
4 changes: 2 additions & 2 deletions docs/examples_literate/general_examples/control.jl
Original file line number Diff line number Diff line change
Expand Up @@ -121,14 +121,14 @@ push!(constraints, velocity[:, T] == 0)

## Solve the problem
problem = minimize(sumsquares(force), constraints)
solve!(problem, () -> SCS.Optimizer(verbose=0))
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))

# We can plot the trajectory taken by the object.

pos = evaluate(position)
plot([pos[1, 1]], [pos[2, 1]], st=:scatter, label="initial point")
plot!([pos[1, T]], [pos[2, T]], st=:scatter, label="final point")
plot!(pos[1, :], pos[2, :], label="trajectory")
plot!(pos[1, :], pos[2, :], label="trajectory")

# We can also see how the magnitude of the force changes over time.

Expand Down
12 changes: 6 additions & 6 deletions docs/examples_literate/general_examples/huber_regression.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,24 +34,24 @@ for i=1:length(p_vals)
## Generate the sign changes.
factor = 2 * rand(Binomial(1, 1-p), number_samples) .- 1;
Y = factor .* X' * beta_true + v;

## Form and solve a standard regression problem.
beta = Variable(n);
fit = norm(beta - beta_true) / norm(beta_true);
cost = norm(X' * beta - Y);
prob = minimize(cost);
solve!(prob, () -> SCS.Optimizer(verbose=0));
solve!(prob, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0));
lsq_data[i] = evaluate(fit);

## Form and solve a prescient regression problem,
## i.e., where the sign changes are known.
cost = norm(factor .* (X'*beta) - Y);
solve!(minimize(cost), () -> SCS.Optimizer(verbose=0))
solve!(minimize(cost), MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
prescient_data[i] = evaluate(fit);

## Form and solve the Huber regression problem.
cost = sum(huber(X' * beta - Y, 1));
solve!(minimize(cost), () -> SCS.Optimizer(verbose=0))
solve!(minimize(cost), MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
huber_data[i] = evaluate(fit);
end

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ function LassoEN(Y,X,γ,λ=0.0)
L4 = sumsquares(b) #sum(b^2)

Sol = minimize(L1-2*L2+γ*L3+λ*L4) #u'u + γ*sum(|b|) + λsum(b^2), where u = Y-Xb
solve!(Sol,()->SCS.Optimizer(verbose = false))
solve!(Sol, SCS.Optimizer)
Sol.status == MOI.OPTIMAL ? b_i = vec(evaluate(b)) : b_i = NaN

return b_i, b_ls
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ X = hcat(ones(size(iris, 1)), iris.SepalLength, iris.SepalWidth, iris.PetalLengt
n, p = size(X)
beta = Variable(p)
problem = minimize(logisticloss(-Y.*(X*beta)))
solve!(problem, () -> SCS.Optimizer(verbose=false))
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))

# Let's see how well the model fits.
using Plots
Expand Down
6 changes: 3 additions & 3 deletions docs/examples_literate/general_examples/max_entropy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,12 @@ using Convex, SCS

n = 25;
m = 15;
A = randn(m, n);
b = rand(m, 1);
A = randn(m, n);
b = rand(m, 1);

x = Variable(n);
problem = maximize(entropy(x), sum(x) == 1, A * x <= b)
solve!(problem, () -> SCS.Optimizer(verbose=false))
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
problem.optval

#-
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,8 @@ SCALE = 10000;
B = rand(LogNormal(8), m) .+ 10000;
B = round.(B, digits=3); # Budget

P_ad = rand(m);
P_time = rand(1,n);
P_ad = rand(m);
P_time = rand(1,n);
P = P_ad * P_time;

T = sin.(range(-2*pi/2, stop=2*pi-2*pi/2, length=n)) * SCALE;
Expand All @@ -46,7 +46,7 @@ D = Variable(m, n);
Si = [min(R[i]*dot(P[i,:], D[i,:]'), B[i]) for i=1:m];
problem = maximize(sum(Si),
[D >= 0, sum(D, dims=1)' <= T, sum(D, dims=2) >= c]);
solve!(problem, () -> SCS.Optimizer(verbose=0));
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0));

#-

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,18 +43,18 @@ x = Variable(n)

# Case 1: Nominal optimal solution
p = minimize(norm(A * x - b, 2))
solve!(p, () -> SCS.Optimizer(verbose=0))
solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
x_nom = evaluate(x)

# Case 2: Stochastic robust approximation
P = 1 / 3 * B' * B;
p = minimize(square(pos(norm(A * x - b))) + quadform(x, Symmetric(P)))
solve!(p, () -> SCS.Optimizer(verbose=0))
solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
x_stoch = evaluate(x)

# Case 3: Worst-case robust approximation
p = minimize(max(norm((A - B) * x - b), norm((A + B) * x - b)))
solve!(p, () -> SCS.Optimizer(verbose=0))
solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
x_wc = evaluate(x)

# Plot residuals:
Expand Down
2 changes: 1 addition & 1 deletion docs/examples_literate/general_examples/svm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ neg_data = rand(MvNormal([-1.0, 2.0], 1.0), M);

#-

function svm(pos_data, neg_data, solver=() -> SCS.Optimizer(verbose=0))
function svm(pos_data, neg_data, solver=MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
## Create variables for the separating hyperplane w'*x = b.
w = Variable(n)
b = Variable()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,7 @@ beta_vals = zeros(length(beta), TRIALS);
for i = 1:TRIALS
lambda = lambda_vals[i];
problem = minimize(loss/m + lambda*reg);
solve!(problem, () -> ECOS.Optimizer(verbose=0));
## solve!(problem, SCS.Optimizer(verbose=0,linear_solver=SCS.Direct, eps=1e-3))
solve!(problem, MOI.OptimizerWIthAttributes(ECOS.Optimizer, "verbose" => 0));
train_error[i] = sum(float(sign.(X*beta_true .+ offset) .!= sign.(evaluate(X*beta - v))))/m;
test_error[i] = sum(float(sign.(X_test*beta_true .+ offset) .!= sign.(evaluate(X_test*beta - v))))/TEST;
beta_vals[:, i] = evaluate(beta);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ x = Variable(n);
for i=1:length(gammas)
cost = sumsquares(A*x - b) + gammas[i]*norm(x,1);
problem = minimize(cost, [norm(x, Inf) <= 1]);
solve!(problem, () -> SCS.Optimizer(verbose=0));
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0));
x_values[:,i] = evaluate(x);
end

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ w = Variable(n);
ret = dot(r, w);
risk = sum(quadform(w, Sigma_nom));
problem = minimize(risk, [sum(w) == 1, ret >= 0.1, norm(w, 1) <= 2])
solve!(problem, () -> SCS.Optimizer(verbose=0));
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0));
wval = vec(evaluate(w))

#-
Expand All @@ -31,7 +31,7 @@ problem = maximize(risk, [Sigma == Sigma_nom + Delta,
diag(Delta) == 0,
abs(Delta) <= 0.2,
Delta == Delta']);
solve!(problem, () -> SCS.Optimizer(verbose=0));
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0));
println("standard deviation = ", round(sqrt(wval' * Sigma_nom * wval), sigdigits=2));
println("worst-case standard deviation = ", round(sqrt(evaluate(risk)), sigdigits=2));
println("worst-case Delta = ");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ Z = ComplexVariable(n,n)
objective = 0.5*real(tr(Z+Z'))
constraint = [P Z;Z' Q] ⪰ 0
problem = maximize(objective,constraint)
solve!(problem, () -> SCS.Optimizer(verbose=0))
solve!(problem, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
computed_fidelity = evaluate(objective)

#-
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# # Phase recovery using MaxCut
#
#
# In this example, we relax the phase retrieval problem similar to the classical
# [MaxCut](http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf) semidefinite
# program and recover the phase of the signal given the magnitude of the linear
Expand Down Expand Up @@ -29,7 +29,7 @@
# Given a linear operator $A$ and a vector $b= |Ax|$ of measured amplitudes,
# in the noiseless case, we can write $Ax = \text{diag}(b)u$ where
# $u \in \mathbb{C}^n$ is a phase vector, satisfying
# $|\mathbb{u}_i| = 1$ for $i = 1,\ldots, n$.
# $|\mathbb{u}_i| = 1$ for $i = 1,\ldots, n$.
#
# We relax this problem as Complex Semidefinite Programming.
#
Expand Down Expand Up @@ -66,10 +66,10 @@ b = abs.(A*x) + rand(n)
M = diagm(b)*(I(n)-A*A')*diagm(b)
U = ComplexVariable(n,n)
objective = inner_product(U,M)
c1 = diag(U) == 1
c1 = diag(U) == 1
c2 = U in :SDP
p = minimize(objective,c1,c2)
solve!(p, () -> SCS.Optimizer(verbose=0))
solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
evaluate(U)


Expand All @@ -79,7 +79,7 @@ evaluate(U)
B, C = eigen(evaluate(U));
length([e for e in B if(abs(real(e))>1e-4)])

#-
#-

# Decompose $U = uu^*$ where $u$ is the phase of $Ax$
u = C[:,1];
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ if VERSION < v"1.2.0-DEV.0"
LinearAlgebra.diagm(v::AbstractVector) = diagm(0 => v)
end

# For the qubit case, a four outcome qubit POVM $\mathbf{M} \in\mathcal{P}(2,4)$ is simulable if and only if
# For the qubit case, a four outcome qubit POVM $\mathbf{M} \in\mathcal{P}(2,4)$ is simulable if and only if
#
# $M_{1}=N_{12}^{+}+N_{13}^{+}+N_{14}^{+},$
#
Expand Down Expand Up @@ -55,7 +55,7 @@ function get_visibility(K)
constraints += t*K[3] + (1-t)*noise[3] == P[2][2] + P[4][2] + P[6][1]
constraints += t*K[4] + (1-t)*noise[4] == P[3][2] + P[5][2] + P[6][2]
p = maximize(t, constraints)
solve!(p, () -> SCS.Optimizer(verbose=0))
solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
return p.optval
end

Expand All @@ -64,9 +64,9 @@ end
function dp(v)
I(2) + v[1]*[0 1; 1 0] + v[2]*[0 -im; im 0] + v[3]*[1 0; 0 -1]
end
b = [ 1 1 1;
-1 -1 1;
-1 1 -1;
b = [ 1 1 1;
-1 -1 1;
-1 1 -1;
1 -1 -1]/sqrt(3)
M = [dp(b[i, :]) for i=1:size(b,1)]/4;
get_visibility(M)
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# # Power flow optimization
# The data for example is taken from [MATPOWER](http://www.pserc.cornell.edu/matpower/) website. MATPOWER is Matlab package for solving power flow and optimal power flow problems.
# The data for example is taken from [MATPOWER](http://www.pserc.cornell.edu/matpower/) website. MATPOWER is Matlab package for solving power flow and optimal power flow problems.

using Convex, SCS
using Test
Expand All @@ -25,7 +25,7 @@ c3 = real(W[1,1]) == 1.06^2;
push!(c1, c2)
push!(c1, c3)
p = maximize(objective, c1);
solve!(p, () -> SCS.Optimizer(verbose = 0))
solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0))
p.optval
#15.125857662600703
evaluate(objective)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ using Convex, SCS
34 64 4;
58 4 100]/100^2

n = length(μ) #number of assets
n = length(μ) #number of assets

R_target = 0.1
w_lower = 0
Expand All @@ -50,13 +50,13 @@ w = Variable(n)
ret = dot(w,μ)
risk = quadform(w,Σ)

p = minimize( risk,
ret >= R_target,
sum(w) == 1,
w_lower <= w,
p = minimize( risk,
ret >= R_target,
sum(w) == 1,
w_lower <= w,
w <= w_upper )

solve!(p, () -> SCS.Optimizer()) #use SCS.Optimizer(verbose = false) to suppress printing
solve!(p, SCS.Optimizer)

#-

Expand Down
Loading