Skip to content

Deep convolutional neural network for semantic segmentation on the cityscapes dataset

Notifications You must be signed in to change notification settings

jonryf/deep-learning-cnn-for-semantic-segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image segmentation of street scenes using Convolutional Neural Networks

Image segmentation is a process of separating an image into sets of pixels, and then classifying those sets. In comparison to object detection, image segmentation increases specificity by applying a pixel mask for each object. The task of image segmentation is a modern challenge with many applications. In this project we will explore how CNN's are used for image segmentation and the different approaches one can take to this task. These approaches include; data augmentation, correct class imbalance, transfer learning, as well as different architectures including unet.

The Cityscapes dataset contains 34 classes in total. The main goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes (i.e., not pre-segmented objects). It is fundamentally a supervised learning learning problem in that a training set of labelled images is provided.

Image segmentation

About

Deep convolutional neural network for semantic segmentation on the cityscapes dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published