Skip to content

jonas089/Toyni

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

36 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Toyni: A STARK Implementation in Progress

Warning

This research implementation of a STARK proving system is not yet secure and under heavy development.

Do not use this in production or your will CERTAINLY get compromized.

No audits, no guarantees provided, use at own risk.

Welcome to Toyni! This is an implementation of a STARK (Scalable Transparent Argument of Knowledge) proving system in Rust. While it's not yet a full zero-knowledge STARK, it provides a solid foundation for understanding how STARKs work.

toyniii

0. Background, STARK Verifier: Constraint vs FRI Layer Checks

βœ… Constraint Check (Single Layer)

  • For each randomly sampled point x:
    • Verifier checks:
      Q(x) * Z(x) == C(x)
      
    • Ensures that the execution trace satisfies all constraints
    • This check is done once per point
    • Not done across layers
    • Merkle proof is optional (depends on how C(x) and Q(x) are committed)

βœ… FRI Layer Checks (Multiple Layers)

  • Purpose: Prove that Q(x) is a low-degree polynomial

  • Process:

    1. Start with evaluations of Q(x) over the domain (Layer 0)
    2. Recursively apply fri_fold() to reduce degree at each layer
    3. At each layer:
      • Verifier checks Merkle proofs for sampled values
      • Verifies that folding is consistent with previous layer
    4. Final layer should be constant or degree-1, checked directly
  • βœ… Merkle proofs are checked at each FRI layer

  • βœ… Folding correctness is verified at each layer


πŸ” STARK Verifier Flow: Visual Diagram

 β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
 β”‚              Constraint Check                 β”‚
 β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
        Sample random x₁, xβ‚‚, ..., xβ‚™ ∈ Domain
                    β”‚
                    β–Ό
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚  Compute Q(xα΅’), C(xα΅’), Z(xα΅’) β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
                    β–Ό
          Check: Q(xα΅’) * Z(xα΅’) == C(xα΅’)
                    β”‚
                    β–Ό
       If false β†’ ❌ Reject   If true β†’ Continue
                    β–Ό
 β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
 β”‚                FRI Protocol                   β”‚
 β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚      FRI Layer 0: Q(x) evaluations │◄── Merkle proof check
     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
              fri_fold(betaβ‚€)
                    β–Ό
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚      FRI Layer 1: folded values    │◄── Merkle proof check
     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
              fri_fold(beta₁)
                    β–Ό
                  ...
                    β–Ό
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚ Final Layer: degree ≀ 1 polynomial│◄── Direct value check
     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

                    β–Ό
               βœ… Accept proof

πŸ” STARK Verifier: Security Parameters for 128-bit Soundness

FRI QUERIES

To achieve 128-bit soundness in STARK proofs, the total probability that a cheating prover is accepted must be less than 2⁻¹²⁸.

This involves carefully choosing parameters for:

  • Constraint checks (Q(x) evaluations)
  • FRI protocol (number of layers and queries per layer)

Example:

  • If L = 20 layers β†’ logβ‚‚(20) β‰ˆ 4.3
  • Then: m β‰ˆ 133 queries per layer

CONSTRAINT CHECKS

Example:

  • If d / N = 1/4, then logβ‚‚(N/d) = 2
  • So: n = 128 / 2 = 64 spot checks
  • If d / N = 1/8, then logβ‚‚(N/d) = 3
  • So: n = 128 / 3 β‰ˆ 43, but round up to be safe

βœ… Practical Recommendation:

Use n = 64–80 spot checks for strong 128-bit soundness across typical domain/degree ratios.

βœ… Recommendations for 128-bit Security

Component Suggested Value
Constraint checks n 64–80
FRI layers L logβ‚‚(N / degree of final poly)
FRI queries m β‰₯ logβ‚‚(L) + 128 (e.g., 133)
Total soundness error Ξ΅_total = Ξ΅_constraints + Ξ΅_fri ≀ 2⁻¹²⁸

πŸ” Summary

Check Type Equation Checked Merkle Proofs Multiple Layers?
Constraint Check Q(x) * Z(x) == C(x) Optional ❌ No
FRI Layer Check Folding consistency, low-degree βœ… Yes βœ… Yes

Meet the amazing artist behind this creation, Kristiana Skrastina

1. Introduction

STARKs are a powerful cryptographic tool that enables proving the correct execution of a computation without revealing the underlying data. Think of it as a way to convince someone that you know the solution to a puzzle without actually showing them the solution. This property, known as zero-knowledge, is crucial for privacy-preserving applications in areas like financial transactions, voting systems, and private identity verification.

2. Why STARKs Matter

Scalability Transparency Zero-Knowledge
β€’ O(logΒ² n) proof size β€’ No trusted setup β€’ Privacy
β€’ Fast verify β€’ Public parameters β€’ Confidentiality
β€’ Efficient β€’ Data protection
β€’ Secure sharing

3. Real-World Applications

Financial Identity Computing
β€’ Private payments β€’ Age verification β€’ Confidential computing
β€’ Asset ownership β€’ Credential validation β€’ Private ML
β€’ Secure MPC

4. Technical Overview

At its heart, Toyni consists of three main components working together:

Virtual Machine Constraint System STARK Prover
β€’ Executes programs β€’ Defines rules β€’ Generates proofs
β€’ Creates traces β€’ Validates states β€’ Uses FRI protocol

5. How It Works

Program Execution Execution Trace Verification
β€’ Run program β€’ Record states β€’ Sample positions
β€’ Track state β€’ Build constraints β€’ Check constraints
β€’ Generate trace

Here's a simple example that demonstrates how Toyni works. We'll create a program that proves a sequence of numbers increments by 1 each time:

fn test_valid_proof() {
    let mut trace = ExecutionTrace::new(4, 1);
    for i in 0..4 {
        let mut row = HashMap::new();
        row.insert("x".to_string(), i);
        trace.insert_column(row);
    }

    let mut constraints = ConstraintSystem::new();
    constraints.add_transition_constraint(
        "increment".to_string(),
        vec!["x".to_string()],
        Box::new(|current, next| {
            let x_n = Fr::from(*current.get("x").unwrap() as u64);
            let x_next = Fr::from(*next.get("x").unwrap() as u64);
            x_next - x_n - Fr::ONE
        }),
    );
    constraints.add_boundary_constraint(
        "starts_at_0".to_string(),
        0,
        vec!["x".to_string()],
        Box::new(|row| Fr::from(*row.get("x").unwrap() as u64)),
    );

    let prover = StarkProver::new(&trace, &constraints);
    let proof = prover.generate_proof();
    let verifier = StarkVerifier::new(&constraints, trace.height as usize);
    assert!(verifier.verify(&proof));
}

This example demonstrates how Toyni can prove that a sequence of numbers follows a specific pattern (incrementing by 1) without revealing the actual numbers. The proof can be verified by anyone, but the actual values remain private.

6. Security Properties

STARKs achieve their security through a combination of domain extension and low-degree testing. Here's how it works:

Domain Extension Low-Degree Testing Soundness Guarantees
β€’ Extend domain β€’ FRI protocol β€’ Soundness error: (1/b)^q
β€’ Blowup factor β€’ Polynomial degree β€’ Query complexity

The security of a STARK proof relies on two key mechanisms:

  1. Domain Extension (Blowup): The composition polynomial is evaluated over a domain that's b times larger than the original trace length, where b is the blowup factor.

  2. Low-Degree Testing: The FRI protocol ensures that the polynomial being tested is close to a valid low-degree polynomial.

The soundness error (probability of accepting an invalid proof) is bounded by:

Pr[undetected cheat] = (1/b)^q

where:

  • b is the blowup factor (e.g., 8 in our example)
  • q is the number of queries made by the verifier

This means that if a prover tries to cheat by modifying a fraction 1/b of the domain, the verifier will detect this with probability at least 1 - (1/b)^q. For example, with a blowup factor of 8 and 10 queries, the soundness error is at most (1/8)^10 β‰ˆ 0.0000001.

7. Project Structure

The codebase is organized into logical components:

Math VM Library
β€’ Polynomial β€’ Constraints β€’ Entry point
β€’ Domain β€’ Trace β€’ Public API
β€’ FRI β€’ Execution β€’ Documentation
β€’ STARK

8. Current Features

Constraint System FRI Protocol Mathematical Operations
β€’ Transition constraints β€’ Low-degree testing β€’ Polynomial arithmetic
β€’ Boundary constraints β€’ Interactive verification β€’ Field operations
β€’ Quotient verification β€’ FRI folding layers β€’ Domain operations

9. Missing Components

Zero-Knowledge Merkle Commitments Fiat-Shamir Transform
β€’ Trace privacy β€’ Tree structure β€’ Deterministic hashing
β€’ State protection β€’ Proof generation β€’ Non-interactive

While we have a working STARK implementation with quotient polynomial verification, it's not yet a full zero-knowledge system. The main limitations are:

  1. We're using random number generation instead of the Fiat-Shamir transform, making the protocol interactive.
  2. The proof system lacks Merkle commitments for the FRI layers, which are essential for zero-knowledge properties. - instead all evaluations are passed to the verifier. This will be addressed soon.

To achieve full zero-knowledge capabilities, we need to:

  • Implement Merkle tree commitments for the FRI layers
  • Replace random number generation with deterministic hashing (Fiat-Shamir transform)
  • Add trace blinding and random masks to the composition polynomial
  • Optimize the proof generation and verification process

10. Next Steps

  1. Merkle Commitments

    • Implement Merkle tree structure for FRI layers
    • Add commitment verification in the FRI protocol
    • Optimize commitment size and verification time
  2. Fiat-Shamir Transform

    • Replace random number generation with deterministic hashing
    • Implement transcript-based challenge generation
    • Ensure security properties of the transform
  3. Constraint System Improvements

    • Add higher-level abstractions for constraint definition
    • Implement more complex constraint types
    • Optimize constraint evaluation
  4. Zero-Knowledge Properties

    • Add trace blinding
    • Implement random masks for the composition polynomial
    • Ensure privacy of witness data
  5. Random Linear Combinations

    • Add random linear combinations to the constraint polynomial

11. Contributing

We welcome contributions to Toyni! Our current focus is on implementing zero-knowledge properties and improving the overall system. We're particularly interested in:

  1. Implementing Merkle tree commitments and the Fiat-Shamir transform
  2. Adding comprehensive test coverage and security audits
  3. Improving documentation and adding more examples
  4. Optimizing performance and reducing proof sizes

12. Associated With


2025 Ciphercurve, Timewave Computer

Building the future of privacy-preserving computation