Skip to content
/ lcheck Public

A library for quickchecking lattice modules and associated operations

Notifications You must be signed in to change notification settings

jmid/lcheck

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

LCheck

LCheck is a module for quickchecking lattice-based code.

The module falls in two:

  • A functor for quickchecking lattice properties

  • two embedded DSLs for quickchecking operations over lattices

An example:

Suppose you want to ensure that the module L below actually implements a lattice:

module L = struct
  let name = "example lattice"
  type elem = Top | Bot
  let leq a b = match a,b with
    | Bot, _ -> true
    | _, Top -> true
    | _, _   -> false
  let join e e' = if e = Bot then e' else Top
  let meet e e' = if e = Bot then Bot else e'
  let bot = Bot
  let eq = (=)
  let arb_elem      = Arbitrary.among [Top; Bot]
  let arb_elem_le e = if e = Bot then Arbitrary.return bot else arb_elem
  let equiv_pair    = Arbitrary.lift (fun o -> (o,o)) arb_elem
  let to_string e   = if e = Bot then "Bot" else "Top"
  let pprint e      = Format.print_string (to_string e)
end

where

  • leq,join,meet,bot implements a lattice over elements of type elem,
  • arb_elem is a generator of arbitrary elem values,
  • arb_elem_le is a generator of arbitrary elem values less-or-equal to its argument,
  • equiv_pair is a generator of equivalent elem values,

You can instantiate a generic functor with L and run the generated QuickCheck testsuite:

# let module LTests = GenericTests(L) in
    run_tests LTests.suite;;
check 19 properties...
testing property leq reflexive in example lattice...
  [✔] passed 1000 tests (0 preconditions failed)
testing property leq transitive in example lattice...
  [✔] passed 1000 tests (0 preconditions failed)
testing property leq anti symmetric in example lattice...
  [✔] passed 1000 tests (0 preconditions failed)

 ... (32 additional lines cut) ...

tests run in 0.02s
[✔] Success! (passed 19 tests)
- : bool = true
# 

Suppose you furthermore have a function between lattices, e.g., flip : L -> L:

(* example operator -- not monotone *)
let flip e = if e = L.Bot then L.Top else L.Bot

You can test flip for monotonicity using LCheck's signature DSL:

# let flip_desc = ("flip",flip) in
     run (testsig (module L) -<-> (module L) =: flip_desc);;
testing property 'flip monotone in 1. argument'...
  [×] 264 failures over 1000 (print at most 1):
  (Bot, Top)
- : bool = false
# 

where the -<-> arrow is supposed to resemble a function arrow ---> with an associated lattice ordering.

Other "property arrows" include -$-> for testing strictness, -~-> for testing invariance, and -%-> for testing distributivity.

The functor:

The functor GenericTests accepts any module with the below signature.

module type LATTICE_TOPLESS =
sig
  val name  : string
  type elem
  val leq       : elem -> elem -> bool
  val join      : elem -> elem -> elem
  val meet      : elem -> elem -> elem
  val bot       : elem
(*  val top       : elem *)
  val eq          : elem -> elem -> bool
  val to_string   : elem -> string
  val pprint      : elem -> unit
  val arb_elem    : elem Arbitrary.t
  val equiv_pair  : (elem * elem) Arbitrary.t
  val arb_elem_le : elem -> elem Arbitrary.t
end

Note that the above signature does not contain an explicit top element. Instead the signature LATTICE extends the above signature with such an element along with a small top-related testsuite.

In addition LCheck provides a number of helper lattices:

  • Bool: a Boolean lattice under reverse implication ordering,
  • DBool: a Boolean lattice under implication ordering,
  • MkPairLattice: a functor for building pair lattices ordered component-wise,
  • MkListLattice: a functor for building list lattices ordered entry-wise.

For more complex lattices containing syntactically different elements with the same meaning (concretization or denotation), one can simply choose to implement 'eq' as a test for ordering in both directions:

let eq e e' = leq e e' && leq e' e

As a consequence the anti-symmetry test from 'GenericTests' will be vacuously true.

The embedded DSLs:

The library contains two embedded DSLs for testing operations over lattices: a combinator-based DSL and a more human-readable DSL with a syntax approaching math-mode signatures. We illustrate both below.

  • The signature DSL is defined by the following BNF:

       modname  ::=  '(module' NAME ')'
    
      baseprop  ::=  modname -<-> modname       (monotonicity)
                  |  modname -$-> modname       (strictness)
                  |  modname -~-> modname       (invariance)
                  |  modname -%-> modname       (distributivity)
    
          prop  ::=  '(testsig' (modname '--->')* baseprop ('--->' modname)* ')' 'for_op'
    

    For example,

      (testsig (module L) -<-> (module L)) for_op
    

    specifies monotonicity of a function from L to L.

    For a more advanced example,

      (testsig (module L) ---> (module L) -<-> (module L) ---> (module L) ---> (module L)) for_op
    

    specifies monotonicity in the second argument of a function with signature L -> L -> L -> L -> L.

    Furthermore the library provides '=:' as an infix shorthand for for_op.

    One limitation of the signature-based DSL is that all arguments have to be lattices, i.e., to match the LATTICE_TOPLESS signature. The combinator-based DSL described below softens this requirement.

  • The combinator DSL is defined by the following BNF:

      modname   ::=  '(module' NAME ')'
    
      baseprop  ::=  op_monotone
                  |  op_strict
                  |  op_invariant
                  |  op_distributive
    
      rightprop ::=  baseprop
                  |  pw_right modname '(' rightprop ')'
    
      leftprop  ::=  rightprop
                  |  pw_left modname '(' leftprop ')'
    
      prop      ::=  'finalize (' leftprop modname modname ')'
    

    Argument modules to pw_left and pw_right has to match the following signature (an element type, a generator, and a string coercion function):

      module type ARB_ARG =
      sig
        type elem
        val arb_elem    : elem Arbitrary.t
        val to_string   : elem -> string
      end
    

    Revising the example above,

      finalize (op_monotone (module L) (module L))
    

    specifies monotonicity of a function from L to L.

    Revising the more advanced example above,

      finalize (pw_left (module L) (pw_right (module L) (pw_right (module L) op_monotone)) (module L) (module L))
    

    specifies monotonicity in the second argument of a function with signature L -> L -> L -> L -> L. (We have omitted parentheses around op_monotone in this example as they are not required.)

    Furthermore the library provides '=::' as an infix shorthand for finalize.

To build and run:

On the command line first run:

$ make

Then you can start an OCaml toplevel with the appropriate modules loaded:

$ ocaml -I `ocamlfind query qcheck` -I _build unix.cma qcheck.cma lCheck.cmo
# #use "example.ml";;
module L :
  sig
    val name : string
    type elem = Top | Bot
    val leq : elem -> elem -> bool
    val join : elem -> elem -> elem
    val meet : elem -> elem -> elem
    val bot : elem
    val eq : 'a -> 'a -> bool
    val arb_elem : elem QCheck.Arbitrary.t
    val arb_elem_le : elem -> elem QCheck.Arbitrary.t
    val equiv_pair : (elem * elem) QCheck.Arbitrary.t
    val to_string : elem -> string
    val pprint : elem -> unit
  end
val flip : L.elem -> L.elem = <fun>

From here on you can try the examples from above.

About

A library for quickchecking lattice modules and associated operations

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published