Skip to content

Commit

Permalink
Merge pull request #1 from googleapis/main
Browse files Browse the repository at this point in the history
sync with googleapis
  • Loading branch information
jaycee-li authored May 17, 2022
2 parents 9007f53 + 5fdf151 commit bcbb21d
Show file tree
Hide file tree
Showing 13 changed files with 169 additions and 14 deletions.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
2 changes: 1 addition & 1 deletion docs/aiplatform.rst → docs/aiplatform/services.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,4 @@ Google Cloud Aiplatform SDK

.. automodule:: google.cloud.aiplatform
:members:
:show-inheritance:
:show-inheritance:
13 changes: 13 additions & 0 deletions docs/aiplatform/types.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
Types for Google Cloud Aiplatform SDK API
===========================================
.. toctree::
:maxdepth: 2

instance_v1
instance_v1beta1
params_v1
params_v1beta1
prediction_v1
prediction_v1beta1
definition_v1
definition_v1beta1
6 changes: 4 additions & 2 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,9 @@ API Reference
.. toctree::
:maxdepth: 2

aiplatform
aiplatform/services
aiplatform/types

aiplatform_v1/services
aiplatform_v1/types

Expand All @@ -22,4 +24,4 @@ For a list of all ``google-cloud-aiplatform`` releases:
.. toctree::
:maxdepth: 2

changelog
changelog
136 changes: 136 additions & 0 deletions google/cloud/aiplatform/matching_engine/_protos/match_service.proto
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
syntax = "proto3";

package google.cloud.aiplatform.container.v1beta1;

import "google/rpc/status.proto";

// MatchService is a Google managed service for efficient vector similarity
// search at scale.
service MatchService {
// Returns the nearest neighbors for the query. If it is a sharded
// deployment, calls the other shards and aggregates the responses.
rpc Match(MatchRequest) returns (MatchResponse) {}

// Returns the nearest neighbors for batch queries. If it is a sharded
// deployment, calls the other shards and aggregates the responses.
rpc BatchMatch(BatchMatchRequest) returns (BatchMatchResponse) {}
}

// Parameters for a match query.
message MatchRequest {
// The ID of the DeploydIndex that will serve the request.
// This MatchRequest is sent to a specific IndexEndpoint of the Control API,
// as per the IndexEndpoint.network. That IndexEndpoint also has
// IndexEndpoint.deployed_indexes, and each such index has an
// DeployedIndex.id field.
// The value of the field below must equal one of the DeployedIndex.id
// fields of the IndexEndpoint that is being called for this request.
string deployed_index_id = 1;

// The embedding values.
repeated float float_val = 2;

// The number of nearest neighbors to be retrieved from database for
// each query. If not set, will use the default from
// the service configuration.
int32 num_neighbors = 3;

// The list of restricts.
repeated Namespace restricts = 4;

// Crowding is a constraint on a neighbor list produced by nearest neighbor
// search requiring that no more than some value k' of the k neighbors
// returned have the same value of crowding_attribute.
// It's used for improving result diversity.
// This field is the maximum number of matches with the same crowding tag.
int32 per_crowding_attribute_num_neighbors = 5;

// The number of neighbors to find via approximate search before
// exact reordering is performed. If not set, the default value from scam
// config is used; if set, this value must be > 0.
int32 approx_num_neighbors = 6;

// The fraction of the number of leaves to search, set at query time allows
// user to tune search performance. This value increase result in both search
// accuracy and latency increase. The value should be between 0.0 and 1.0. If
// not set or set to 0.0, query uses the default value specified in
// NearestNeighborSearchConfig.TreeAHConfig.leaf_nodes_to_search_percent.
int32 leaf_nodes_to_search_percent_override = 7;
}

// Response of a match query.
message MatchResponse {
message Neighbor {
// The ids of the matches.
string id = 1;

// The distances of the matches.
double distance = 2;
}
// All its neighbors.
repeated Neighbor neighbor = 1;
}

// Parameters for a batch match query.
message BatchMatchRequest {
// Batched requests against one index.
message BatchMatchRequestPerIndex {
// The ID of the DeploydIndex that will serve the request.
string deployed_index_id = 1;

// The requests against the index identified by the above deployed_index_id.
repeated MatchRequest requests = 2;

// Selects the optimal batch size to use for low-level batching. Queries
// within each low level batch are executed sequentially while low level
// batches are executed in parallel.
// This field is optional, defaults to 0 if not set. A non-positive number
// disables low level batching, i.e. all queries are executed sequentially.
int32 low_level_batch_size = 3;
}

// The batch requests grouped by indexes.
repeated BatchMatchRequestPerIndex requests = 1;
}

// Response of a batch match query.
message BatchMatchResponse {
// Batched responses for one index.
message BatchMatchResponsePerIndex {
// The ID of the DeployedIndex that produced the responses.
string deployed_index_id = 1;

// The match responses produced by the index identified by the above
// deployed_index_id. This field is set only when the query against that
// index succeed.
repeated MatchResponse responses = 2;

// The status of response for the batch query identified by the above
// deployed_index_id.
google.rpc.Status status = 3;
}

// The batched responses grouped by indexes.
repeated BatchMatchResponsePerIndex responses = 1;
}

// Namespace specifies the rules for determining the datapoints that are
// eligible for each matching query, overall query is an AND across namespaces.
message Namespace {
// The string name of the namespace that this proto is specifying,
// such as "color", "shape", "geo", or "tags".
string name = 1;

// The allowed tokens in the namespace.
repeated string allow_tokens = 2;

// The denied tokens in the namespace.
// The denied tokens have exactly the same format as the token fields, but
// represents a negation. When a token is denied, then matches will be
// excluded whenever the other datapoint has that token.
//
// For example, if a query specifies {color: red, blue, !purple}, then that
// query will match datapoints that are red or blue, but if those points are
// also purple, then they will be excluded even if they are red/blue.
repeated string deny_tokens = 3;
}
26 changes: 15 additions & 11 deletions tests/system/aiplatform/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ def setup_method(self):

@pytest.fixture()
def storage_client(self):
yield storage.Client(project=e2e_base._PROJECT)
yield storage.Client(project=_TEST_PROJECT)

@pytest.fixture()
def staging_bucket(self, storage_client):
Expand Down Expand Up @@ -174,7 +174,7 @@ def test_get_new_dataset_and_import(self, dataset_gapic_client):

try:
text_dataset = aiplatform.TextDataset.create(
display_name=f"temp_sdk_integration_test_create_text_dataset_{uuid.uuid4()}",
display_name=self._make_display_name(key="get_new_dataset_and_import"),
)

my_dataset = aiplatform.TextDataset(dataset_name=text_dataset.name)
Expand All @@ -189,7 +189,6 @@ def test_get_new_dataset_and_import(self, dataset_gapic_client):
my_dataset.import_data(
gcs_source=_TEST_TEXT_ENTITY_EXTRACTION_GCS_SOURCE,
import_schema_uri=_TEST_TEXT_ENTITY_IMPORT_SCHEMA,
import_request_timeout=600.0,
)

data_items_post_import = dataset_gapic_client.list_data_items(
Expand All @@ -198,8 +197,7 @@ def test_get_new_dataset_and_import(self, dataset_gapic_client):

assert len(list(data_items_post_import)) == 469
finally:
if text_dataset is not None:
text_dataset.delete()
text_dataset.delete()

@vpcsc_config.skip_if_inside_vpcsc
def test_create_and_import_image_dataset(self, dataset_gapic_client):
Expand All @@ -208,7 +206,9 @@ def test_create_and_import_image_dataset(self, dataset_gapic_client):

try:
img_dataset = aiplatform.ImageDataset.create(
display_name=f"temp_sdk_integration_create_and_import_dataset_{uuid.uuid4()}",
display_name=self._make_display_name(
key="create_and_import_image_dataset"
),
gcs_source=_TEST_IMAGE_OBJECT_DETECTION_GCS_SOURCE,
import_schema_uri=_TEST_IMAGE_OBJ_DET_IMPORT_SCHEMA,
create_request_timeout=None,
Expand All @@ -230,7 +230,7 @@ def test_create_tabular_dataset(self):

try:
tabular_dataset = aiplatform.TabularDataset.create(
display_name=f"temp_sdk_integration_create_and_import_dataset_{uuid.uuid4()}",
display_name=self._make_display_name(key="create_tabular_dataset"),
gcs_source=[_TEST_TABULAR_CLASSIFICATION_GCS_SOURCE],
create_request_timeout=None,
)
Expand All @@ -250,13 +250,15 @@ def test_create_tabular_dataset(self):
tabular_dataset.delete()

def test_create_tabular_dataset_from_dataframe(self, bigquery_dataset):
bq_staging_table = f"bq://{e2e_base._PROJECT}.{bigquery_dataset.dataset_id}.test_table{uuid.uuid4()}"
bq_staging_table = f"bq://{_TEST_PROJECT}.{bigquery_dataset.dataset_id}.test_table{uuid.uuid4()}"

try:
tabular_dataset = aiplatform.TabularDataset.create_from_dataframe(
df_source=_TEST_DATAFRAME,
staging_path=bq_staging_table,
display_name=f"temp_sdk_integration_create_and_import_dataset_from_dataframe{uuid.uuid4()}",
display_name=self._make_display_name(
key="create_and_import_dataset_from_dataframe"
),
)

"""Use the Dataset.create_from_dataframe() method to create a new tabular dataset.
Expand All @@ -281,12 +283,14 @@ def test_create_tabular_dataset_from_dataframe_with_provided_schema(
created and references the BQ source."""

try:
bq_staging_table = f"bq://{e2e_base._PROJECT}.{bigquery_dataset.dataset_id}.test_table{uuid.uuid4()}"
bq_staging_table = f"bq://{_TEST_PROJECT}.{bigquery_dataset.dataset_id}.test_table{uuid.uuid4()}"

tabular_dataset = aiplatform.TabularDataset.create_from_dataframe(
df_source=_TEST_DATAFRAME,
staging_path=bq_staging_table,
display_name=f"temp_sdk_integration_create_and_import_dataset_from_dataframe{uuid.uuid4()}",
display_name=self._make_display_name(
key="create_and_import_dataset_from_dataframe"
),
bq_schema=_TEST_DATAFRAME_BQ_SCHEMA,
)

Expand Down

0 comments on commit bcbb21d

Please sign in to comment.