Skip to content

Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

License

Notifications You must be signed in to change notification settings

jannerm/trajectory-transformer

Repository files navigation

Trajectory Transformer

Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem.

New: Also see Alexander Nikulin's fork with attention caching and vectorized rollouts!

Installation

All python dependencies are in environment.yml. Install with:

conda env create -f environment.yml
conda activate trajectory
pip install -e .

For reproducibility, we have also included system requirements in a Dockerfile (see installation instructions), but the conda installation should work on most standard Linux machines.

Usage

Train a transformer with: python scripts/train.py --dataset halfcheetah-medium-v2

To reproduce the offline RL results: python scripts/plan.py --dataset halfcheetah-medium-v2

By default, these commands will use the hyperparameters in config/offline.py. You can override them with runtime flags:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--horizon 5 --beam_width 32

A few hyperparameters are different from those listed in the paper because of changes to the discretization strategy. These hyperparameters will be updated in the next arxiv version to match what is currently in the codebase.

Pretrained models

We have provided pretrained models for 16 datasets: {halfcheetah, hopper, walker2d, ant}-{expert-v2, medium-expert-v2, medium-v2, medium-replay-v2}. Download them with ./pretrained.sh

The models will be saved in logs/$DATASET/gpt/pretrained. To plan with these models, refer to them using the gpt_loadpath flag:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--gpt_loadpath gpt/pretrained

pretrained.sh will also download 15 plans from each model, saved to logs/$DATASET/plans/pretrained. Read them with python plotting/read_results.py.

To create the table of offline RL results from the paper, run python plotting/table.py. This will print a table that can be copied into a Latex document. (Expand to view table source.)
\begin{table*}[h]
\centering
\small
\begin{tabular}{llrrrrrr}
\toprule
\multicolumn{1}{c}{\bf Dataset} & \multicolumn{1}{c}{\bf Environment} & \multicolumn{1}{c}{\bf BC} & \multicolumn{1}{c}{\bf MBOP} & \multicolumn{1}{c}{\bf BRAC} & \multicolumn{1}{c}{\bf CQL} & \multicolumn{1}{c}{\bf DT} & \multicolumn{1}{c}{\bf TT (Ours)} \\
\midrule
Medium-Expert & HalfCheetah & $59.9$ & $105.9$ & $41.9$ & $91.6$ & $86.8$ & $95.0$ \scriptsize{\raisebox{1pt}{$\pm 0.2$}} \\
Medium-Expert & Hopper & $79.6$ & $55.1$ & $0.9$ & $105.4$ & $107.6$ & $110.0$ \scriptsize{\raisebox{1pt}{$\pm 2.7$}} \\
Medium-Expert & Walker2d & $36.6$ & $70.2$ & $81.6$ & $108.8$ & $108.1$ & $101.9$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\
Medium-Expert & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $116.1$ \scriptsize{\raisebox{1pt}{$\pm 9.0$}} \\
\midrule
Medium & HalfCheetah & $43.1$ & $44.6$ & $46.3$ & $44.0$ & $42.6$ & $46.9$ \scriptsize{\raisebox{1pt}{$\pm 0.4$}} \\
Medium & Hopper & $63.9$ & $48.8$ & $31.3$ & $58.5$ & $67.6$ & $61.1$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\
Medium & Walker2d & $77.3$ & $41.0$ & $81.1$ & $72.5$ & $74.0$ & $79.0$ \scriptsize{\raisebox{1pt}{$\pm 2.8$}} \\
Medium & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $83.1$ \scriptsize{\raisebox{1pt}{$\pm 7.3$}} \\
\midrule
Medium-Replay & HalfCheetah & $4.3$ & $42.3$ & $47.7$ & $45.5$ & $36.6$ & $41.9$ \scriptsize{\raisebox{1pt}{$\pm 2.5$}} \\
Medium-Replay & Hopper & $27.6$ & $12.4$ & $0.6$ & $95.0$ & $82.7$ & $91.5$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\
Medium-Replay & Walker2d & $36.9$ & $9.7$ & $0.9$ & $77.2$ & $66.6$ & $82.6$ \scriptsize{\raisebox{1pt}{$\pm 6.9$}} \\
Medium-Replay & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $77.0$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\
\midrule
\multicolumn{2}{c}{\bf Average (without Ant)} & 47.7 & 47.8 & 36.9 & 77.6 & 74.7 & 78.9 \hspace{.6cm} \\
\multicolumn{2}{c}{\bf Average (all settings)} & $-$ & $-$ & $-$ & $-$ & $-$ & 82.2 \hspace{.6cm} \\
\bottomrule
\end{tabular}
\label{table:d4rl}
\end{table*}

To create the average performance plot, run python plotting/plot.py. (Expand to view plot.)

Docker

Copy your MuJoCo key to the Docker build context and build the container:

cp ~/.mujoco/mjkey.txt azure/files/
docker build -f azure/Dockerfile . -t trajectory

Test the container:

docker run -it --rm --gpus all \
	--mount type=bind,source=$PWD,target=/home/code \
	--mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \
	trajectory \
	bash -c \
	"export PYTHONPATH=$PYTHONPATH:/home/code && \
	python /home/code/scripts/train.py --dataset hopper-medium-expert-v2 --exp_name docker/"

Running on Azure

Setup

  1. Launching jobs on Azure requires one more python dependency:
pip install git+https://github.com/JannerM/doodad.git@janner
  1. Tag the image built in the previous section and push it to Docker Hub:
export DOCKER_USERNAME=$(docker info | sed '/Username:/!d;s/.* //')
docker tag trajectory ${DOCKER_USERNAME}/trajectory:latest
docker image push ${DOCKER_USERNAME}/trajectory
  1. Update azure/config.py, either by modifying the file directly or setting the relevant environment variables. To set the AZURE_STORAGE_CONNECTION variable, navigate to the Access keys section of your storage account. Click Show keys and copy the Connection string.

  2. Download azcopy: ./azure/download.sh

Usage

Launch training jobs with python azure/launch_train.py and planning jobs with python azure/launch_plan.py.

These scripts do not take runtime arguments. Instead, they run the corresponding scripts (scripts/train.py and scripts/plan.py, respectively) using the Cartesian product of the parameters in params_to_sweep.

Viewing results

To rsync the results from the Azure storage container, run ./azure/sync.sh.

To mount the storage container:

  1. Create a blobfuse config with ./azure/make_fuse_config.sh
  2. Run ./azure/mount.sh to mount the storage container to ~/azure_mount

To unmount the container, run sudo umount -f ~/azure_mount; rm -r ~/azure_mount

Reference

@inproceedings{janner2021sequence,
  title = {Offline Reinforcement Learning as One Big Sequence Modeling Problem},
  author = {Michael Janner and Qiyang Li and Sergey Levine},
  booktitle = {Advances in Neural Information Processing Systems},
  year = {2021},
}

Acknowledgements

The GPT implementation is from Andrej Karpathy's minGPT repo.

About

Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published