This is our testing module for the implementation of improved WGAN in Pytorch
- Python >= 3.6
- Pytorch v0.4.0
- Numpy
- SciPy
- TensorFlow
Go to test
directory and run python test_compare_tf_to.py
We inject the same weights init and inputs into layers of TensorFlow and Pytorch that we want to compare. For example, we set 5e-2 for the weights of Conv2d layer in both TensorFlow and Pytorch. Then we passed the same random input to those 2 layers and finally we compared 2 outputs from TensorFlow tensor and Pytorch tensor.
We use cosine to calculate the distance between 2 outputs. Reference: scipy.spatial.distance.cosine
We've compared the implementation of several layers in WGAN model. They are:
- Depth to space
- Conv2d
- ConvMeanPool
- MeanPoolConv
- UpsampleConv
- ResidualBlock (up)
- ResidualBlock (down)
- GoodGenerator
- Discriminator
- LayerNorm
- BatchNorm
- Gradient of Discriminator
- Gradient of LayerNorm
- Gradient of BatchNorm
There are some weird results (cosine < 0 or the distance is bigger than defined threshold - 1 degree) and we look forward to your comments. Here are the outputs of the comparison.
b, c, h, w, in, out: 512, 12, 32, 32, 12, 4
-----------gen_data------------
True
tf.abs.mean: 0.500134
to.abs.mean: 0.500134
diff.mean: 0.0
cosine distance of gen_data: 0.0
-----------depth to space------------
True
tf.abs.mean: 0.500047
to.abs.mean: 0.500047
diff.mean: 0.0
cosine distance of depth to space: 0.0
-----------conv2d------------
True
tf.abs.mean: 2.5888
to.abs.mean: 2.5888
diff.mean: 3.56939e-07
cosine distance of conv2d: 5.96046447754e-08
-----------ConvMeanPool------------
True
tf.abs.mean: 2.58869
to.abs.mean: 2.58869
diff.mean: 2.93676e-07
cosine distance of ConvMeanPool: 0.0
-----------MeanPoolConv------------
True
tf.abs.mean: 2.48026
to.abs.mean: 2.48026
diff.mean: 3.42314e-07
cosine distance of MeanPoolConv: 0.0
-----------UpsampleConv------------
True
tf.abs.mean: 2.64478
to.abs.mean: 2.64478
diff.mean: 5.50668e-07
cosine distance of UpsampleConv: 0.0
-----------ResidualBlock_Up------------
True
tf.abs.mean: 1.01438
to.abs.mean: 1.01438
diff.mean: 5.99736e-07
cosine distance of ResidualBlock_Up: 0.0
-----------ResidualBlock_Down------------
False
tf.abs.mean: 2.38841
to.abs.mean: 2.38782
diff.mean: 0.192403
cosine distance of ResidualBlock_Down: 0.00430130958557
-----------Generator------------
True
tf.abs.mean: 0.183751
to.abs.mean: 0.183751
diff.mean: 9.97704e-07
cosine distance of Generator: 0.0
-----------D_input------------
True
tf.abs.mean: 0.500013
to.abs.mean: 0.500013
diff.mean: 0.0
cosine distance of D_input: 0.0
-----------Discriminator------------
True
tf.abs.mean: 295.795
to.abs.mean: 295.745
diff.mean: 0.0496472
cosine distance of Discriminator: 0.0
-----------GradOfDisc------------
GradOfDisc
tf: 315944.9375
to: 315801.09375
True
tf.abs.mean: 315945.0
to.abs.mean: 315801.0
diff.mean: 143.844
cosine distance of GradOfDisc: 0.0
-----------LayerNorm-Forward------------
True
tf.abs.mean: 0.865959
to.abs.mean: 0.865946
diff.mean: 1.3031e-05
cosine distance of LayerNorm-Forward: -2.38418579102e-07
-----------LayerNorm-Backward------------
False
tf.abs.mean: 8.67237e-10
to.abs.mean: 2.49221e-10
diff.mean: 6.18019e-10
cosine distance of LayerNorm-Backward: 0.000218987464905
-----------BatchNorm------------
True
tf.abs.mean: 0.865698
to.abs.mean: 0.865698
diff.mean: 1.13394e-07
cosine distance of BatchNorm: 0.0
-----------BatchNorm-Backward------------
True
tf.abs.mean: 8.66102e-10
to.abs.mean: 8.62539e-10
diff.mean: 3.56342e-12
cosine distance of BatchNorm-Backward: 4.17232513428e-07