Skip to content

Compare outputs between layers written in Tensorflow and layers written in Pytorch

License

Notifications You must be signed in to change notification settings

jalola/compare-tensorflow-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch

This is our testing module for the implementation of improved WGAN in Pytorch

Prerequisites

How to run

Go to test directory and run python test_compare_tf_to.py

How we do it

We inject the same weights init and inputs into layers of TensorFlow and Pytorch that we want to compare. For example, we set 5e-2 for the weights of Conv2d layer in both TensorFlow and Pytorch. Then we passed the same random input to those 2 layers and finally we compared 2 outputs from TensorFlow tensor and Pytorch tensor.

We use cosine to calculate the distance between 2 outputs. Reference: scipy.spatial.distance.cosine

What were compared between TensorFlow and Pytorch

We've compared the implementation of several layers in WGAN model. They are:

  • Depth to space
  • Conv2d
  • ConvMeanPool
  • MeanPoolConv
  • UpsampleConv
  • ResidualBlock (up)
  • ResidualBlock (down)
  • GoodGenerator
  • Discriminator
  • LayerNorm
  • BatchNorm
  • Gradient of Discriminator
  • Gradient of LayerNorm
  • Gradient of BatchNorm

Result

There are some weird results (cosine < 0 or the distance is bigger than defined threshold - 1 degree) and we look forward to your comments. Here are the outputs of the comparison.

b, c, h, w, in, out: 512, 12, 32, 32, 12, 4

-----------gen_data------------
True
tf.abs.mean: 0.500134
to.abs.mean: 0.500134
diff.mean: 0.0
cosine distance of gen_data: 0.0

-----------depth to space------------
True
tf.abs.mean: 0.500047
to.abs.mean: 0.500047
diff.mean: 0.0 cosine distance of depth to space: 0.0

-----------conv2d------------
True
tf.abs.mean: 2.5888
to.abs.mean: 2.5888
diff.mean: 3.56939e-07
cosine distance of conv2d: 5.96046447754e-08

-----------ConvMeanPool------------
True
tf.abs.mean: 2.58869
to.abs.mean: 2.58869
diff.mean: 2.93676e-07
cosine distance of ConvMeanPool: 0.0

-----------MeanPoolConv------------
True
tf.abs.mean: 2.48026
to.abs.mean: 2.48026
diff.mean: 3.42314e-07
cosine distance of MeanPoolConv: 0.0

-----------UpsampleConv------------
True
tf.abs.mean: 2.64478
to.abs.mean: 2.64478
diff.mean: 5.50668e-07
cosine distance of UpsampleConv: 0.0

-----------ResidualBlock_Up------------
True
tf.abs.mean: 1.01438
to.abs.mean: 1.01438
diff.mean: 5.99736e-07
cosine distance of ResidualBlock_Up: 0.0

-----------ResidualBlock_Down------------
False
tf.abs.mean: 2.38841
to.abs.mean: 2.38782
diff.mean: 0.192403
cosine distance of ResidualBlock_Down: 0.00430130958557

-----------Generator------------
True
tf.abs.mean: 0.183751
to.abs.mean: 0.183751
diff.mean: 9.97704e-07
cosine distance of Generator: 0.0

-----------D_input------------
True
tf.abs.mean: 0.500013
to.abs.mean: 0.500013
diff.mean: 0.0
cosine distance of D_input: 0.0

-----------Discriminator------------
True
tf.abs.mean: 295.795
to.abs.mean: 295.745
diff.mean: 0.0496472
cosine distance of Discriminator: 0.0

-----------GradOfDisc------------
GradOfDisc
tf: 315944.9375
to: 315801.09375
True
tf.abs.mean: 315945.0
to.abs.mean: 315801.0
diff.mean: 143.844
cosine distance of GradOfDisc: 0.0

-----------LayerNorm-Forward------------
True
tf.abs.mean: 0.865959
to.abs.mean: 0.865946
diff.mean: 1.3031e-05
cosine distance of LayerNorm-Forward: -2.38418579102e-07

-----------LayerNorm-Backward------------
False
tf.abs.mean: 8.67237e-10
to.abs.mean: 2.49221e-10
diff.mean: 6.18019e-10
cosine distance of LayerNorm-Backward: 0.000218987464905

-----------BatchNorm------------
True
tf.abs.mean: 0.865698
to.abs.mean: 0.865698
diff.mean: 1.13394e-07
cosine distance of BatchNorm: 0.0

-----------BatchNorm-Backward------------
True
tf.abs.mean: 8.66102e-10
to.abs.mean: 8.62539e-10
diff.mean: 3.56342e-12
cosine distance of BatchNorm-Backward: 4.17232513428e-07

Acknowledge

About

Compare outputs between layers written in Tensorflow and layers written in Pytorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages