This repo contains all the materials I create during my ML learning journey. :)
- Numpy
- Different ways of creating numpy arrays: np.array, np.zeros, np.ones, np.random.random, np.random.randint, etc.
- Array attributes: .shape, .ndim, .itemsize, .size, .dtype, .nbytes
- Reshaping and slicing
- Joining arrays: np.vstack, np.hstack, np.dstack, and np.concatenate
- Splitting arrays: np.vsplit, np.hsplit, np.dsplit, np.split
- NumPy ufuncs
- Aggregations: min, max, sum, median etc.
- Broadcasting, masking and sorting using sort, argsort, partition and argpartition and their use cases.
- Pandas
-
Pandas objects: Series, DataFrame and Index
-
Data indexing and selection: slicing and masking
-
Operations on data: Ufuncs
-
Handling missing data: None of Python and Nan of numpy
-
Operations on null vaues: isnull, notnull, dropna, fillna
-
Joining dataframes: concat and merge
-
Aggregations and Groupby
Vectorized string operations and time series data handling can be covered from Pandas official documentation.
-
- Matplotlib
Notebooks on time series forecasting.
Python solutions to Project Euler problems.