Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .azure-pipelines/scripts/ut/env_setup.sh
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ echo "mxnet version is $mxnet_version"
if [[ "${tensorflow_version}" == *"-official" ]]; then
pip install tensorflow==${tensorflow_version%-official}
elif [[ "${tensorflow_version}" == "spr-base" ]]; then
pip install /tf_dataset/tf_binary/tensorflow*.whl
pip install /tf_dataset/tf_binary/221125/tensorflow*.whl
if [[ $? -ne 0 ]]; then
exit 1
fi
Expand Down
1 change: 1 addition & 0 deletions neural_compressor/adaptor/tensorflow.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -299,6 +299,7 @@
'Dequantize + DepthwiseConv2dNative + Add + Relu6 + QuantizeV2',
'Dequantize + DepthwiseConv2dNative + BiasAdd + QuantizeV2',
'Dequantize + FusedBatchNormV3 + Relu + QuantizeV2',
'Dequantize + FusedBatchNormV3 + LeakyRelu + QuantizeV2',
'Dequantize + _MklFusedInstanceNorm + Relu + QuantizeV2',
'Dequantize + _MklFusedInstanceNorm + LeakyRelu + QuantizeV2',
'Dequantize + Conv2DBackpropInput + BiasAdd + QuantizeV2',
Expand Down
108 changes: 105 additions & 3 deletions neural_compressor/adaptor/tf_utils/quantize_graph/qdq/fuse_qdq_bn.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,9 @@ def __init__(self, **kwargs):
reverse=True)
if self.new_api:
self.fusion_mapping = {
'FusedBatchNormV3': self.apply_newly_bn_relu_fusion,
'FusedBatchNormV3Relu': self.apply_newly_bn_relu_fusion,
'FusedBatchNormV3': self.apply_newly_bn_relu_fusion
'FusedBatchNormV3LeakyRelu': self.apply_newly_bn_leakyrelu_fusion
}
else:
self.fusion_mapping = {}
Expand Down Expand Up @@ -75,8 +76,7 @@ def apply_newly_bn_relu_fusion(self, match_node_name):
[output_min_node_name] + [output_max_node_name] + control_inputs
output_min_node = helper.create_constant_node(output_min_node_name, -1., dtypes.float32)
output_max_node = helper.create_constant_node(output_max_node_name, 1., dtypes.float32)
quantized_bn_node = helper.create_node(node_op, quantized_node_name,
quantized_node_input_names)
quantized_bn_node = helper.create_node(node_op, quantized_node_name, quantized_node_input_names)
if relu_node_name is not None:
helper.set_attr_string(quantized_bn_node, "activation_mode", b'Relu')
if self.node_name_mapping[offset_name].node.op == "Const":
Expand Down Expand Up @@ -141,6 +141,108 @@ def apply_newly_bn_relu_fusion(self, match_node_name):
new_node.CopyFrom(node)
self.add_output_graph_node(new_node)

def apply_newly_bn_leakyrelu_fusion(self, match_node_name):
matched_node = self.node_name_mapping[match_node_name[0]]
skip_node_name = match_node_name[1:]
control_inputs, normal_inputs = self._get_node_input(
matched_node.node.name)
scale_name = normal_inputs[1]
offset_name = normal_inputs[2]
mean_name = normal_inputs[3]
variance_name = normal_inputs[4]

all_input_names = self._add_eightbit_prologue_nodes(matched_node.node.name)
all_input_names = [
all_input_names[0],
scale_name,
offset_name,
mean_name,
variance_name,
all_input_names[1],
all_input_names[2]
]

for _, node in enumerate(self.input_graph.node):
if node.name in skip_node_name:
self.logger.debug("skip node {}".format(node.name))
elif node.name == match_node_name[0]:
self.logger.debug("Matched node {} with input {}.".format(node.name, node.input))
leakyrelu_node_name = match_node_name[1]
node_op = '_QuantizedFusedBatchNorm'
quantized_node_name = node.name + "_eightbit_quantized_bn"
output_min_node_name = quantized_node_name + "_input7_output_min"
output_max_node_name = quantized_node_name + "_input8_output_max"
quantized_node_input_names = all_input_names + \
[output_min_node_name] + [output_max_node_name] + control_inputs
output_min_node = helper.create_constant_node(output_min_node_name, -1., dtypes.float32)
output_max_node = helper.create_constant_node(output_max_node_name, 1., dtypes.float32)
quantized_bn_node = helper.create_node(node_op, quantized_node_name, quantized_node_input_names)

helper.set_attr_string(quantized_bn_node, "activation_mode", b'LeakyRelu')
helper.copy_attr(quantized_bn_node, "alpha", \
self.node_name_mapping[leakyrelu_node_name].node.attr["alpha"])
if self.node_name_mapping[offset_name].node.op == "Const":
helper.set_attr_bool(quantized_bn_node, "is_offset_const", True)
else:
helper.set_attr_bool(quantized_bn_node, "is_offset_const", False)
if self.node_name_mapping[mean_name].node.op == "Const":
helper.set_attr_bool(quantized_bn_node, "is_mean_const", True)
else:
helper.set_attr_bool(quantized_bn_node, "is_mean_const", False)
helper.set_attr_dtype(quantized_bn_node, "T", dtypes.qint8)
helper.set_attr_dtype(quantized_bn_node, "U", dtypes.float32)
helper.set_attr_dtype(quantized_bn_node, "Tout", dtypes.qint8)

"""
# 0. x
# 1. scale
# 2. offset
# 3. mean
# 4. variance
# 5. x_min
# 6. x_max
# 7. {output_min}
# 8. {output_max}
"""
helper.set_attr_type_list(quantized_bn_node, 'input_types', [
dtypes.qint8.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
])


"""
# 0. output
# 1. output_min
# 2. output_max
"""
helper.set_attr_type_list(quantized_bn_node, 'out_types', [
dtypes.qint8.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
])
self.add_output_graph_node(output_min_node)
self.add_output_graph_node(output_max_node)
self.add_output_graph_node(quantized_bn_node)
self._intel_cpu_add_dequantize_result_node(
quantized_output_name = quantized_node_name,
original_node_name = match_node_name[-1],
dtype = dtypes.qint8,
min_tensor_index = 1,
performance_only=self.performance_only
)

else:
new_node = node_def_pb2.NodeDef()
new_node.CopyFrom(node)
self.add_output_graph_node(new_node)

def get_longest_fuse(self):
self._get_op_list()
real_patterns = [pattern[1 :-1] for pattern in self.sorted_patterns]
Expand Down
108 changes: 105 additions & 3 deletions neural_compressor/adaptor/tf_utils/quantize_graph/quantize_graph_bn.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,9 @@ def __init__(self, **kwargs):
reverse=True)
if self.new_api:
self.fusion_mapping = {
'FusedBatchNormV3': self.apply_newly_bn_relu_fusion,
'FusedBatchNormV3Relu': self.apply_newly_bn_relu_fusion,
'FusedBatchNormV3': self.apply_newly_bn_relu_fusion
'FusedBatchNormV3LeakyRelu': self.apply_newly_bn_leakyrelu_fusion
}
else:
self.fusion_mapping = {}
Expand Down Expand Up @@ -75,8 +76,7 @@ def apply_newly_bn_relu_fusion(self, match_node_name):
[output_min_node_name] + [output_max_node_name] + control_inputs
output_min_node = helper.create_constant_node(output_min_node_name, -1., dtypes.float32)
output_max_node = helper.create_constant_node(output_max_node_name, 1., dtypes.float32)
quantized_bn_node = helper.create_node(node_op, quantized_node_name,
quantized_node_input_names)
quantized_bn_node = helper.create_node(node_op, quantized_node_name, quantized_node_input_names)
if relu_node_name is not None:
helper.set_attr_string(quantized_bn_node, "activation_mode", b'Relu')
if self.node_name_mapping[offset_name].node.op == "Const":
Expand Down Expand Up @@ -140,6 +140,108 @@ def apply_newly_bn_relu_fusion(self, match_node_name):
new_node.CopyFrom(node)
self.add_output_graph_node(new_node)

def apply_newly_bn_leakyrelu_fusion(self, match_node_name):
matched_node = self.node_name_mapping[match_node_name[0]]
skip_node_name = match_node_name[1:]
control_inputs, normal_inputs = self._get_node_input(
matched_node.node.name)
scale_name = normal_inputs[1]
offset_name = normal_inputs[2]
mean_name = normal_inputs[3]
variance_name = normal_inputs[4]

all_input_names = self._add_eightbit_prologue_nodes(matched_node.node.name)
all_input_names = [
all_input_names[0],
scale_name,
offset_name,
mean_name,
variance_name,
all_input_names[1],
all_input_names[2]
]

for _, node in enumerate(self.input_graph.node):
if node.name in skip_node_name:
self.logger.debug("skip node {}".format(node.name))
elif node.name == match_node_name[0]:
self.logger.debug("Matched node {} with input {}.".format(node.name, node.input))
leakyrelu_node_name = match_node_name[1]
node_op = '_QuantizedFusedBatchNorm'
quantized_node_name = node.name + "_eightbit_quantized_bn"
output_min_node_name = quantized_node_name + "_input7_output_min"
output_max_node_name = quantized_node_name + "_input8_output_max"
quantized_node_input_names = all_input_names + \
[output_min_node_name] + [output_max_node_name] + control_inputs
output_min_node = helper.create_constant_node(output_min_node_name, -1., dtypes.float32)
output_max_node = helper.create_constant_node(output_max_node_name, 1., dtypes.float32)
quantized_bn_node = helper.create_node(node_op, quantized_node_name, quantized_node_input_names)

helper.set_attr_string(quantized_bn_node, "activation_mode", b'LeakyRelu')
helper.copy_attr(quantized_bn_node, "alpha", \
self.node_name_mapping[leakyrelu_node_name].node.attr["alpha"])
if self.node_name_mapping[offset_name].node.op == "Const":
helper.set_attr_bool(quantized_bn_node, "is_offset_const", True)
else:
helper.set_attr_bool(quantized_bn_node, "is_offset_const", False)
if self.node_name_mapping[mean_name].node.op == "Const":
helper.set_attr_bool(quantized_bn_node, "is_mean_const", True)
else:
helper.set_attr_bool(quantized_bn_node, "is_mean_const", False)
helper.set_attr_dtype(quantized_bn_node, "T", dtypes.qint8)
helper.set_attr_dtype(quantized_bn_node, "U", dtypes.float32)
helper.set_attr_dtype(quantized_bn_node, "Tout", dtypes.qint8)

"""
# 0. x
# 1. scale
# 2. offset
# 3. mean
# 4. variance
# 5. x_min
# 6. x_max
# 7. {output_min}
# 8. {output_max}
"""
helper.set_attr_type_list(quantized_bn_node, 'input_types', [
dtypes.qint8.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
])


"""
# 0. output
# 1. output_min
# 2. output_max
"""
helper.set_attr_type_list(quantized_bn_node, 'out_types', [
dtypes.qint8.as_datatype_enum,
dtypes.float32.as_datatype_enum,
dtypes.float32.as_datatype_enum,
])
self.add_output_graph_node(output_min_node)
self.add_output_graph_node(output_max_node)
self.add_output_graph_node(quantized_bn_node)
self._intel_cpu_add_dequantize_result_node(
quantized_output_name = quantized_node_name,
original_node_name = match_node_name[-1],
dtype = dtypes.qint8,
min_tensor_index = 1,
performance_only=self.performance_only
)

else:
new_node = node_def_pb2.NodeDef()
new_node.CopyFrom(node)
self.add_output_graph_node(new_node)

def get_longest_fuse(self):
self._get_op_list()
matched_rule, matched_node_name = self._is_match(self.sorted_patterns)
Expand Down
Loading