-
Notifications
You must be signed in to change notification settings - Fork 490
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
290 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
import logging | ||
import os | ||
import re | ||
import subprocess | ||
import unidiff | ||
import llm | ||
import argparse | ||
import tiktoken | ||
|
||
# Initialize logger | ||
_logger = logging.getLogger(__name__) | ||
_logger.setLevel(logging.INFO) | ||
|
||
def collect_matching_file_paths(directory, name_regex, content_pattern=None): | ||
matching_file_paths = [] | ||
content_regex = re.compile(content_pattern) if content_pattern else None | ||
|
||
for root, _, files in os.walk(directory): | ||
for file in files: | ||
if name_regex.match(file): | ||
file_path = os.path.join(root, file) | ||
if not content_regex: | ||
matching_file_paths.append(file_path) | ||
else: | ||
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: | ||
try: | ||
content = f.read() | ||
if content_regex.search(content): | ||
matching_file_paths.append(file_path) | ||
except Exception as e: | ||
print(f"Could not read file {file_path}: {e}") | ||
|
||
return matching_file_paths | ||
|
||
def read_files(file_list): | ||
contents = [] | ||
for file_path in file_list: | ||
with open(file_path, 'r', encoding='utf-8') as file: | ||
content = file.read() | ||
contents.append(f"File `{file_path}`:\n```\n{content}\n```\n\n") | ||
return "".join(contents) | ||
|
||
def get_llm_context_window(model): | ||
size = model.default_max_tokens | ||
if size: # it is not always filled in? | ||
return size | ||
model_name = model.model_id | ||
context_window_sizes = { | ||
"gpt-3.5-turbo": 4096, | ||
"gpt-3.5-turbo-16k": 16384, | ||
"gpt-4": 8192, | ||
"gpt-4-32k": 32768, | ||
"gpt-4o": 128*1024, | ||
} | ||
if model_name not in context_window_sizes: | ||
raise Exception(f"Context window size for llm '{model_name}' is not known, please add it to the table") | ||
return context_window_sizes[model_name] | ||
|
||
def check_token_count(prompt, model): | ||
encoder = tiktoken.encoding_for_model(model.model_id) | ||
num_tokens = len(encoder.encode(prompt)) | ||
max_tokens = get_llm_context_window(model) | ||
_logger.info(f"Number of tokens in the prompt: {num_tokens}") | ||
if max_tokens and num_tokens > max_tokens: | ||
print(f"WARNING: Prompt of {num_tokens} tokens exceeds the model's context window size of {max_tokens} tokens") | ||
|
||
def generate_command_text(task, file_type): | ||
file_type_commands = { | ||
"md": "The following Markdown file belongs to the OMNeT++ project.", | ||
"rst": "The following reStructuredText file belongs to the OMNeT++ project. Blocks starting with '..' are comments, do not touch them!", | ||
"tex": "The following LaTeX file belongs to the OMNeT++ project.", | ||
"ned": "The following is an OMNeT++ NED file. DO NOT CHANGE ANYTHING IN NON-COMMENT LINES.", | ||
"py": "The following Python source file belongs to the OMNeT++ project.", | ||
} | ||
what = "docstrings" if file_type == "py" else "text" | ||
task_commands = { | ||
"proofread": f"You are an editor of technical documentation. You are tireless and diligent. Fix any English mistakes in the {what}. Keep all markup, line breaks and indentation intact as much as possible!", | ||
"improve-language": f"You are an editor of technical documentation. You are tireless and diligent. Improve the English in the {what}. Keep all other markup and line breaks intact as much as possible.", | ||
"eliminate-you-addressing": f"You are an editor of technical documentation. You are tireless and diligent. At places where {what} addresses the user as 'you', change it to neutral, e.g., to passive voice or 'one' as subject. Keep all markup and line breaks intact as much as possible.", | ||
"neddoc": "You are a technical writer. You are tireless and diligent. Write a new neddoc comment for the module in the NED file. NED comments use // marks instead of /*..*/.", | ||
# "neddoc": """ | ||
# You are a technical writer. You are tireless and diligent. You are working in the context of OMNeT++ and the INET Framework. | ||
# Your task is to write a single sentence capturing the most important aspect of the following simple module. | ||
# Ignore the operational details of the module and focus on the aspects that help the user understand what this module is good for. | ||
# """ | ||
} | ||
|
||
if file_type not in file_type_commands: | ||
raise ValueError(f'Unsupported file type "{file_type}"') | ||
if task not in task_commands: | ||
raise ValueError(f'Unsupported task "{task}"') | ||
if "ned" in task and file_type != "ned": | ||
raise ValueError(f'Task "{task}" is only supported for the "ned" file type') | ||
|
||
return file_type_commands[file_type] + " " + task_commands[task] | ||
|
||
def get_recommended_model(task): | ||
recommended_models = { | ||
None: "gpt-3.5-turbo-16k", | ||
"proofread": "gpt-3.5-turbo-16k", | ||
"improve-language": "gpt-3.5-turbo-16k", | ||
"eliminate-you-addressing": "gpt-4o", | ||
"neddoc": "gpt-4o" | ||
} | ||
if task not in recommended_models: | ||
raise ValueError(f'No info on which model is recommended for "{task}", specify one explicitly via --model or update the tool') | ||
return recommended_models[task] | ||
|
||
def find_additional_context_files(file_path, file_type, task): | ||
context_files = [] | ||
if task == "neddoc": | ||
# fname_without_ext = os.path.splitext(os.path.basename(file_path))[0] | ||
# h_fname = fname_without_ext + ".h" | ||
# cc_fname = fname_without_ext + ".cc" | ||
# for root, _, files in os.walk(os.path.dirname(file_path) or "."): | ||
# if h_fname in files: | ||
# context_files.append(os.path.join(root, h_fname)) | ||
# if cc_fname in files: | ||
# context_files.append(os.path.join(root, cc_fname)) | ||
|
||
fname_without_ext = os.path.splitext(os.path.basename(file_path))[0] | ||
grep_command = f"""rg --heading -g '*.cc' -g '*.h' -g '*.ini' -g '*.ned' -g '!{os.path.basename(file_path)}' -C 20 '{fname_without_ext}' $(git rev-parse --show-toplevel) | head -n 3000 > {file_path}.ctx""" | ||
os.system(grep_command) | ||
context_files.append(file_path + ".ctx") | ||
|
||
return context_files | ||
|
||
def create_prompt(content, context, task, prompt, file_type): | ||
command_text = prompt if prompt else generate_command_text(task, file_type) | ||
prompt = f"Update a file delimited by triple quotes. {command_text}\n\n" | ||
if context: | ||
prompt += f"Here is the context:\n{context}\n\n" | ||
prompt += f'Here is the file that should be updated:\n\n```\n{content}\n```\n\n' | ||
prompt += f"Respond with the updated file verbatim without any additional commentary.\n" | ||
return prompt | ||
|
||
def invoke_llm(prompt, model): | ||
check_token_count(prompt, model) | ||
|
||
_logger.debug(f"Sending prompt to LLM: {prompt}") | ||
reply = model.prompt(prompt) | ||
reply_text = reply.text() | ||
_logger.debug(f"Received result from LLM: {reply_text}") | ||
return reply_text | ||
|
||
def split_content(file_content, file_type, max_chars): | ||
if file_type == "tex": | ||
return split_latex_by_sections(file_content, max_chars) | ||
elif file_type == "rst": | ||
return split_rst_by_headings(file_content, max_chars) | ||
elif file_type == "py": | ||
return split_python_by_defs(file_content, max_chars) | ||
else: | ||
return [file_content] | ||
|
||
def split_latex_by_sections(latex_source, max_chars): | ||
# Regex to match section headers | ||
pattern = r'(\\section\{.*?\})' | ||
return split_by_regex(latex_source, pattern, max_chars) | ||
|
||
def split_rst_by_headings(rst_source, max_chars): | ||
# Regular expression to match RST headings (title and underline) | ||
pattern = r'(^.*\n(={3,}|-{3,}|`{3,}|:{3,}|\+{3,}|\*{3,}|\#{3,}|\^{3,}|"{3,}|~{3,})$)' | ||
return split_by_regex(rst_source, pattern, max_chars) | ||
|
||
def split_python_by_defs(python_source, max_chars): | ||
# Regular expression to match Python toplevel functions and classes | ||
pattern = r'(^(def|class) )' | ||
return split_by_regex(python_source, pattern, max_chars) | ||
|
||
def split_by_regex(text, regex_pattern, max_chars): | ||
# Split to chunks | ||
regex = re.compile(regex_pattern, re.MULTILINE) | ||
matches = list(regex.finditer(text)) | ||
split_indices = [0] + [match.start() for match in matches] + [len(text)] | ||
chunks = [text[split_indices[i]:split_indices[i+1]] for i in range(1, len(split_indices)-1)] | ||
|
||
# Merge smaller chunks | ||
parts = [] | ||
current_part = "" | ||
for chunk in chunks: | ||
if len(current_part) + len(chunk) > max_chars: | ||
parts.append(current_part) | ||
current_part = "" | ||
current_part += chunk | ||
parts.append(current_part) | ||
|
||
return parts | ||
|
||
def extract(reply_text, original_content): | ||
content = reply_text | ||
if content.count("```") >= 2: | ||
content = re.sub(r"^.*```.*?\n(.*\n)```.*$", r"\1", content, 1, re.DOTALL) | ||
|
||
trailing_whitespace_len = len(original_content) - len(original_content.rstrip()) | ||
original_trailing_whitespace = original_content[-trailing_whitespace_len:] | ||
content = content.rstrip() + original_trailing_whitespace | ||
return content | ||
|
||
def apply_command_to_file(file_path, context_files, file_type, task, prompt, model, chunk_size=None, save_prompt=False): | ||
with open(file_path, 'r', encoding='utf-8') as file: | ||
file_content = file.read() | ||
|
||
context_files = context_files or [] | ||
context_files += find_additional_context_files(file_path, file_type, task) | ||
if context_files: | ||
print(" context files: " + " ".join(context_files)) | ||
context = read_files(context_files) | ||
|
||
if chunk_size is None: | ||
chunk_size = get_llm_context_window(model)*2 - len(context) # assume average token length of 2 chars | ||
modified_content = "" | ||
parts = split_content(file_content, file_type, chunk_size) | ||
for i, part in enumerate(parts): | ||
if len(parts) > 1: | ||
print(f" part {i + 1}/{len(parts)}") | ||
prompt = create_prompt(part, context, task, prompt, file_type) | ||
|
||
if save_prompt: | ||
with open(file_path+".prompt"+str(i), 'w', encoding='utf-8') as file: | ||
file.write(prompt) | ||
|
||
reply_text = invoke_llm(prompt, model) | ||
modified_content += extract(reply_text, part) | ||
|
||
with open(file_path, 'w', encoding='utf-8') as file: | ||
file.write(modified_content) | ||
_logger.debug(f"Modified {file_path} successfully.") | ||
|
||
def apply_command_to_files(file_list, context_files, file_type, task, prompt, model, chunk_size=None, save_prompt=False): | ||
n = len(file_list) | ||
for i, file_path in enumerate(file_list): | ||
try: | ||
print(f"Processing file {i + 1}/{n} {file_path}") | ||
apply_command_to_file(file_path, context_files, file_type, task, prompt, model, chunk_size=chunk_size, save_prompt=save_prompt) | ||
except Exception as e: | ||
print(f"-> Exception: {e}") | ||
|
||
def resolve_file_list(paths, file_type, file_ext=None): | ||
file_extension_patterns = { | ||
"md": r".*.md$", | ||
"rst": r".*.rst$", | ||
"tex": r".*.tex$", | ||
"ned": r".*.ned$", | ||
"py": r".*.py$" | ||
} | ||
|
||
if file_ext: | ||
filename_regex = re.compile(rf".*.{file_ext}$") | ||
else: | ||
if file_type not in file_extension_patterns: | ||
raise ValueError("Unsupported file type.") | ||
filename_regex = re.compile(file_extension_patterns[file_type]) | ||
|
||
file_list = [] | ||
for path in paths: | ||
if os.path.isdir(path): | ||
file_list.extend(collect_matching_file_paths(path, filename_regex)) | ||
elif os.path.isfile(path) and filename_regex.match(path): | ||
file_list.append(path) | ||
return sorted(file_list) | ||
|
||
def process_files(paths, context_files, file_type, file_ext, task, prompt, model_name, chunk_size=None, save_prompt=False): | ||
if not model_name: | ||
model_name = get_recommended_model(task) | ||
model = llm.get_model(model_name) | ||
model.key = '' | ||
file_list = resolve_file_list(paths, file_type, file_ext) | ||
print("Files to process: " + " ".join(file_list)) | ||
print("Using LLM: " + model_name) | ||
del model_name, file_ext, paths | ||
apply_command_to_files(**locals()) | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="Process and improve specific types of files in a given directory or files.") | ||
parser.add_argument("paths", type=str, nargs='+', help="The directories or files to process.") | ||
parser.add_argument("--file-type", type=str, choices=["md", "rst", "tex", "ned", "py"], help="The type of files to process.") | ||
parser.add_argument("--file-ext", type=str, help="The extension of files to process. Takes precedence over --file-type.") | ||
parser.add_argument("--task", type=str, choices=["proofread", "improve-language", "eliminate-you-addressing", "neddoc"], help="The task to perform on the files.") | ||
parser.add_argument("--prompt", type=str, help="The LLM prompt to use. Generic instructions and the content of context files will be appended. Takes precedence over --task.") | ||
parser.add_argument("--model", type=str, dest="model_name", default=None, help="The name of the LLM model to use.") | ||
parser.add_argument("--context", type=str, nargs='*', dest="context_files", help="The context files to be used.") | ||
parser.add_argument("--chunk-size", type=int, default=None, help="The maximum number of characters to be sent to the LLM model at once.") | ||
parser.add_argument("--save-prompt", action='store_true', help="Save the LLM prompt for each input file as <filename>.prompt.") | ||
|
||
args = parser.parse_args() | ||
process_files(**vars(args)) | ||
|
||
if __name__ == "__main__": | ||
main() |