Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions gguf-py/gguf/tensor_mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -446,6 +446,14 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
),

MODEL_TENSOR.ATTN_K_B: (
"model.layers.{bid}.self_attn.k_b_proj", # deepseek2
),

MODEL_TENSOR.ATTN_V_B: (
"model.layers.{bid}.self_attn.v_b_proj", # deepseek2
),

MODEL_TENSOR.ATTN_Q_A_NORM: (
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
),
Expand Down
66 changes: 45 additions & 21 deletions src/llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3173,8 +3173,17 @@ static bool llama_kv_cache_init(
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();

struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_tensor * k;
ggml_tensor * v;
if (cparams.mla_attn && model.layers[i].wk_b && model.layers[i].wv_b) {
k = ggml_new_tensor_1d(ctx, type_k, 1);
v = ggml_new_tensor_1d(ctx, type_v, 1);
}
else {
k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
}

ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
Expand Down Expand Up @@ -13368,6 +13377,10 @@ struct llm_build_context {
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

// whether to use n_tokens as the matrix dimension during multiplication or n_head
// n_tokens is higher during prompt processing, this allows to optimize for this case
bool pp_opt = n_tokens > n_head;

for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;

Expand Down Expand Up @@ -13496,43 +13509,54 @@ struct llm_build_context {
struct ggml_tensor * wk_b = ggml_view_3d(ctx0, model.layers[il].wk_b, n_embd_head_qk_nope, kv_lora_rank, n_head, ggml_row_size(model.layers[il].wk_b->type, n_embd_head_qk_nope), ggml_row_size(model.layers[il].wk_b->type, kv_lora_rank * n_embd_head_qk_nope), 0);
cb(wk_b, "wk_b", il);

struct ggml_tensor * q_nope_perm = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope_perm, "q_nope_perm", il);
q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope, "q_nope_perm", il);

struct ggml_tensor * q_nope2 = ggml_mul_mat(ctx0, wk_b, q_nope_perm);
struct ggml_tensor * q_nope2 = ggml_mul_mat(ctx0, wk_b, q_nope);
cb(q_nope2, "q_nope2", il);

struct ggml_tensor * q_nope2_perm = ggml_permute(ctx0, q_nope2, 0, 2, 1, 3);
cb(q_nope2_perm, "q_nope2_perm", il);

struct ggml_tensor * kq_nope = ggml_mul_mat(ctx0, kv_cache, q_nope2_perm);
if (!pp_opt) {
q_nope2 = ggml_permute(ctx0, q_nope2, 0, 2, 1, 3);
cb(q_nope2, "q_nope2_perm", il);
}
struct ggml_tensor * kq_nope = ggml_mul_mat(ctx0, kv_cache, q_nope2);
cb(kq_nope, "kq_nope", il);

// Huh? This is not used anywhere
//struct ggml_tensor * q_pe_perm = ggml_permute(ctx0, q_pe, 0, 3, 2, 1);
//cb(q_pe_perm, "q_pe_perm", il);
if (!pp_opt) {
kq_nope = ggml_permute(ctx0, kq_nope, 0, 2, 1, 3);
cb(kq_nope, "kq_nope_perm", il);
}

if (pp_opt) {
q_pe = ggml_permute(ctx0, q_pe, 0, 2, 1, 3);
cb(q_pe, "q_pe_perm", il);
}
struct ggml_tensor * kq_pe = ggml_mul_mat(ctx0, kr_cache, q_pe);
cb(kq_pe, "kq_pe", il);

if (!pp_opt) {
kq_pe = ggml_permute(ctx0, kq_pe, 0, 2, 1, 3);
cb(kq_pe, "kq_pe_perm", il);
}

struct ggml_tensor * kq = ggml_add(ctx0, kq_nope, kq_pe);
cb(kq, "kq", il);

// We need this copy because soft_max expects a contiguous tensor
kq = ggml_cont(ctx0, ggml_permute(ctx0, kq, 0, 2, 1, 3));
cb(kq, "kq_perm", il);

kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, kq_scale, hparams.f_max_alibi_bias);
cb(kq, "kq_soft_max_ext", il);

struct ggml_tensor * kq_perm = ggml_permute(ctx0, kq, 0, 2, 1, 3);
cb(kq_perm, "kq_soft_max_ext_perm", il);
if (!pp_opt) {
kq = ggml_permute(ctx0, kq, 0, 2, 1, 3);
cb(kq, "kq_soft_max_ext_perm", il);
}

struct ggml_tensor * kqv_compressed = ggml_mul_mat(ctx0, kv_cache_trans, kq_perm);
struct ggml_tensor * kqv_compressed = ggml_mul_mat(ctx0, kv_cache_trans, kq);
cb(kqv_compressed, "kqv_compressed", il);

kqv_compressed = ggml_permute(ctx0, kqv_compressed, 0, 2, 1, 3);
cb(kqv_compressed, "kqv_compressed_perm", il);
if (!pp_opt) {
kqv_compressed = ggml_permute(ctx0, kqv_compressed, 0, 2, 1, 3);
cb(kqv_compressed, "kqv_compressed_perm", il);
}

struct ggml_tensor * wv_b = ggml_view_3d(ctx0, model.layers[il].wv_b, kv_lora_rank, n_embd_head_v, n_head, ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank), ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank * n_embd_head_v), 0);
cb(wv_b, "wv_b", il);
Expand Down