Skip to content

PydanticRPC is a Python library that enables you to rapidly expose Pydantic models via gRPC/ConnectRPC services without writing any protobuf files.

License

Notifications You must be signed in to change notification settings

i2y/pydantic-rpc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

56 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ PydanticRPC

PydanticRPC is a Python library that enables you to rapidly expose Pydantic models via gRPC/Connect RPC services without writing any protobuf files. Instead, it automatically generates protobuf files on the fly from the method signatures of your Python objects and the type signatures of your Pydantic models.

Below is an example of a simple gRPC service that exposes a PydanticAI agent:

import asyncio

from openai import AsyncOpenAI
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
from pydantic_rpc import AsyncIOServer, Message


# `Message` is just an alias for Pydantic's `BaseModel` class.
class CityLocation(Message):
    city: str
    country: str


class Olympics(Message):
    year: int

    def prompt(self):
        return f"Where were the Olympics held in {self.year}?"


class OlympicsLocationAgent:
    def __init__(self):
        client = AsyncOpenAI(
            base_url="http://localhost:11434/v1",
            api_key="ollama_api_key",
        )
        ollama_model = OpenAIModel(
            model_name="llama3.2",
            openai_client=client,
        )
        self._agent = Agent(ollama_model)

    async def ask(self, req: Olympics) -> CityLocation:
        result = await self._agent.run(req.prompt())
        return result.data


if __name__ == "__main__":
    s = AsyncIOServer()
    loop = asyncio.get_event_loop()
    loop.run_until_complete(s.run(OlympicsLocationAgent()))

And here is an example of a simple Connect RPC service that exposes the same agent as an ASGI application:

import asyncio

from openai import AsyncOpenAI
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
from pydantic_rpc import ConnecpyASGIApp, Message


class CityLocation(Message):
    city: str
    country: str


class Olympics(Message):
    year: int

    def prompt(self):
        return f"Where were the Olympics held in {self.year}?"


class OlympicsLocationAgent:
    def __init__(self):
        client = AsyncOpenAI(
            base_url="http://localhost:11434/v1",
            api_key="ollama_api_key",
        )
        ollama_model = OpenAIModel(
            model_name="llama3.2",
            openai_client=client,
        )
        self._agent = Agent(ollama_model, result_type=CityLocation)

    async def ask(self, req: Olympics) -> CityLocation:
        result = await self._agent.run(req.prompt())
        return result.data

app = ConnecpyASGIApp()
app.mount(OlympicsLocationAgent())

πŸ’‘ Key Features

  • πŸ”„ Automatic Protobuf Generation: Automatically creates protobuf files matching the method signatures of your Python objects.
  • βš™οΈ Dynamic Code Generation: Generates server and client stubs using grpcio-tools.
  • βœ… Pydantic Integration: Uses pydantic for robust type validation and serialization.
  • πŸ“„ Pprotobuf File Export: Exports the generated protobuf files for use in other languages.
  • For gRPC:
    • πŸ’š Health Checking: Built-in support for gRPC health checks using grpc_health.v1.
    • πŸ”Ž Server Reflection: Built-in support for gRPC server reflection.
    • ⚑ Asynchronous Support: Easily create asynchronous gRPC services with AsyncIOServer.
  • For gRPC-Web:
    • 🌐 WSGI/ASGI Support: Create gRPC-Web services that can run as WSGI or ASGI applications powered by Sonora.
  • For Connect-RPC:
    • 🌐 Connecpy Support: Partially supports Connect-RPC via Connecpy.
  • πŸ› οΈ Pre-generated Protobuf Files and Code: Pre-generate proto files and corresponding code via the CLI. By setting the environment variable (PYDANTIC_RPC_SKIP_GENERATION), you can skip runtime generation.

πŸ“¦ Installation

Install PydanticRPC via pip:

pip install pydantic-rpc

πŸš€ Getting Started

πŸ”§ Synchronous Service Example

from pydantic_rpc import Server, Message

class HelloRequest(Message):
    name: str

class HelloReply(Message):
    message: str

class Greeter:
    # Define methods that accepts a request and returns a response.
    def say_hello(self, request: HelloRequest) -> HelloReply:
        return HelloReply(message=f"Hello, {request.name}!")

if __name__ == "__main__":
    server = Server()
    server.run(Greeter())

βš™οΈ Asynchronous Service Example

import asyncio

from pydantic_rpc import AsyncIOServer, Message


class HelloRequest(Message):
    name: str


class HelloReply(Message):
    message: str


class Greeter:
    async def say_hello(self, request: HelloRequest) -> HelloReply:
        return HelloReply(message=f"Hello, {request.name}!")


if __name__ == "__main__":
    server = AsyncIOServer()
    loop = asyncio.get_event_loop()
    loop.run_until_complete(server.run(Greeter()))

🌐 ASGI Application Example

from pydantic_rpc import ASGIApp, Message

class HelloRequest(Message):
    name: str

class HelloReply(Message):
    message: str

class Greeter:
    def say_hello(self, request: HelloRequest) -> HelloReply:
        return HelloReply(message=f"Hello, {request.name}!")


async def app(scope, receive, send):
    """ASGI application.

    Args:
        scope (dict): The ASGI scope.
        receive (callable): The receive function.
        send (callable): The send function.
    """
    pass

# Please note that `app` is any ASGI application, such as FastAPI or Starlette.

app = ASGIApp(app)
app.mount(Greeter())

🌐 WSGI Application Example

from pydantic_rpc import WSGIApp, Message

class HelloRequest(Message):
    name: str

class HelloReply(Message):
    message: str

class Greeter:
    def say_hello(self, request: HelloRequest) -> HelloReply:
        return HelloReply(message=f"Hello, {request.name}!")

def app(environ, start_response):
    """WSGI application.

    Args:
        environ (dict): The WSGI environment.
        start_response (callable): The start_response function.
    """
    pass

# Please note that `app` is any WSGI application, such as Flask or Django.

app = WSGIApp(app)
app.mount(Greeter())

πŸ† Connecpy (Connect-RPC) Example

PydanticRPC also partially supports Connect-RPC via connecpy. Check out β€œgreeting_connecpy.py” for an example:

uv run greeting_connecpy.py

This will launch a Connecpy-based ASGI application that uses the same Pydantic models to serve Connect-RPC requests.

Note

Please install protoc-gen-connecpy to run the Connecpy example.

  1. Install Go.
  2. Install protoc-gen-connecpy:
    go install github.com/connecpy/protoc-gen-connecpy@latest

♻️ Skipping Protobuf Generation

By default, PydanticRPC generates .proto files and code at runtime. If you wish to skip the code-generation step (for example, in production environment), set the environment variable below:

export PYDANTIC_RPC_SKIP_GENERATION=true

When this variable is set to "true", PydanticRPC will load existing pre-generated modules rather than generating them on the fly.

πŸ’Ž Advanced Features

🌊 Response Streaming

PydanticRPC supports streaming responses only for asynchronous gRPC and gRPC-Web services. If a service class method’s return type is typing.AsyncIterator[T], the method is considered a streaming method.

Please see the sample code below:

import asyncio
from typing import Annotated, AsyncIterator

from openai import AsyncOpenAI
from pydantic import Field
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
from pydantic_rpc import AsyncIOServer, Message


# `Message` is just a pydantic BaseModel alias
class CityLocation(Message):
    city: Annotated[str, Field(description="The city where the Olympics were held")]
    country: Annotated[
        str, Field(description="The country where the Olympics were held")
    ]


class OlympicsQuery(Message):
    year: Annotated[int, Field(description="The year of the Olympics", ge=1896)]

    def prompt(self):
        return f"Where were the Olympics held in {self.year}?"


class OlympicsDurationQuery(Message):
    start: Annotated[int, Field(description="The start year of the Olympics", ge=1896)]
    end: Annotated[int, Field(description="The end year of the Olympics", ge=1896)]

    def prompt(self):
        return f"From {self.start} to {self.end}, how many Olympics were held? Please provide the list of countries and cities."


class StreamingResult(Message):
    answer: Annotated[str, Field(description="The answer to the query")]


class OlympicsAgent:
    def __init__(self):
        client = AsyncOpenAI(
            base_url='http://localhost:11434/v1',
            api_key='ollama_api_key',
        )
        ollama_model = OpenAIModel(
            model_name='llama3.2',
            openai_client=client,
        )
        self._agent = Agent(ollama_model)

    async def ask(self, req: OlympicsQuery) -> CityLocation:
        result = await self._agent.run(req.prompt(), result_type=CityLocation)
        return result.data

    async def ask_stream(
        self, req: OlympicsDurationQuery
    ) -> AsyncIterator[StreamingResult]:
        async with self._agent.run_stream(req.prompt(), result_type=str) as result:
            async for data in result.stream_text(delta=True):
                yield StreamingResult(answer=data)


if __name__ == "__main__":
    s = AsyncIOServer()
    loop = asyncio.get_event_loop()
    loop.run_until_complete(s.run(OlympicsAgent()))

In the example above, the ask_stream method returns an AsyncIterator[StreamingResult] object, which is considered a streaming method. The StreamingResult class is a Pydantic model that defines the response type of the streaming method. You can use any Pydantic model as the response type.

Now, you can call the ask_stream method of the server described above using your preferred gRPC client tool. The example below uses buf curl.

% buf curl --data '{"start": 1980, "end": 2024}' -v http://localhost:50051/olympicsagent.v1.OlympicsAgent/AskStream --protocol grpc --http2-prior-knowledge 

buf: * Using server reflection to resolve "olympicsagent.v1.OlympicsAgent"
buf: * Dialing (tcp) localhost:50051...
buf: * Connected to [::1]:50051
buf: > (#1) POST /grpc.reflection.v1.ServerReflection/ServerReflectionInfo
buf: > (#1) Accept-Encoding: identity
buf: > (#1) Content-Type: application/grpc+proto
buf: > (#1) Grpc-Accept-Encoding: gzip
buf: > (#1) Grpc-Timeout: 119997m
buf: > (#1) Te: trailers
buf: > (#1) User-Agent: grpc-go-connect/1.12.0 (go1.21.4) buf/1.28.1
buf: > (#1)
buf: } (#1) [5 bytes data]
buf: } (#1) [32 bytes data]
buf: < (#1) HTTP/2.0 200 OK
buf: < (#1) Content-Type: application/grpc
buf: < (#1) Grpc-Message: Method not found!
buf: < (#1) Grpc-Status: 12
buf: < (#1)
buf: * (#1) Call complete
buf: > (#2) POST /grpc.reflection.v1alpha.ServerReflection/ServerReflectionInfo
buf: > (#2) Accept-Encoding: identity
buf: > (#2) Content-Type: application/grpc+proto
buf: > (#2) Grpc-Accept-Encoding: gzip
buf: > (#2) Grpc-Timeout: 119967m
buf: > (#2) Te: trailers
buf: > (#2) User-Agent: grpc-go-connect/1.12.0 (go1.21.4) buf/1.28.1
buf: > (#2)
buf: } (#2) [5 bytes data]
buf: } (#2) [32 bytes data]
buf: < (#2) HTTP/2.0 200 OK
buf: < (#2) Content-Type: application/grpc
buf: < (#2) Grpc-Accept-Encoding: identity, deflate, gzip
buf: < (#2)
buf: { (#2) [5 bytes data]
buf: { (#2) [434 bytes data]
buf: * Server reflection has resolved file "olympicsagent.proto"
buf: * Invoking RPC olympicsagent.v1.OlympicsAgent.AskStream
buf: > (#3) POST /olympicsagent.v1.OlympicsAgent/AskStream
buf: > (#3) Accept-Encoding: identity
buf: > (#3) Content-Type: application/grpc+proto
buf: > (#3) Grpc-Accept-Encoding: gzip
buf: > (#3) Grpc-Timeout: 119947m
buf: > (#3) Te: trailers
buf: > (#3) User-Agent: grpc-go-connect/1.12.0 (go1.21.4) buf/1.28.1
buf: > (#3)
buf: } (#3) [5 bytes data]
buf: } (#3) [6 bytes data]
buf: * (#3) Finished upload
buf: < (#3) HTTP/2.0 200 OK
buf: < (#3) Content-Type: application/grpc
buf: < (#3) Grpc-Accept-Encoding: identity, deflate, gzip
buf: < (#3)
buf: { (#3) [5 bytes data]
buf: { (#3) [25 bytes data]
{
 "answer": "Here's a list of Summer"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [31 bytes data]
{
  "answer": " and Winter Olympics from 198"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [29 bytes data]
{
  "answer": "0 to 2024:\n\nSummer Olympics"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [20 bytes data]
{
  "answer": ":\n1. 1980 - Moscow"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [20 bytes data]
{
  "answer": ", Soviet Union\n2. "
}
buf: { (#3) [5 bytes data]
buf: { (#3) [32 bytes data]
{
  "answer": "1984 - Los Angeles, California"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [15 bytes data]
{
  "answer": ", USA\n3. 1988"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [26 bytes data]
{
  "answer": " - Seoul, South Korea\n4."
}
buf: { (#3) [5 bytes data]
buf: { (#3) [27 bytes data]
{
  "answer": " 1992 - Barcelona, Spain\n"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [20 bytes data]
{
  "answer": "5. 1996 - Atlanta,"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [22 bytes data]
{
  "answer": " Georgia, USA\n6. 200"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [26 bytes data]
{
  "answer": "0 - Sydney, Australia\n7."
}
buf: { (#3) [5 bytes data]
buf: { (#3) [25 bytes data]
{
  "answer": " 2004 - Athens, Greece\n"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [20 bytes data]
{
  "answer": "8. 2008 - Beijing,"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [18 bytes data]
{
  "answer": " China\n9. 2012 -"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [29 bytes data]
{
  "answer": " London, United Kingdom\n10."
}
buf: { (#3) [5 bytes data]
buf: { (#3) [24 bytes data]
{
  "answer": " 2016 - Rio de Janeiro"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [18 bytes data]
{
  "answer": ", Brazil\n11. 202"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [24 bytes data]
{
  "answer": "0 - Tokyo, Japan (held"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [21 bytes data]
{
  "answer": " in 2021 due to the"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [26 bytes data]
{
  "answer": " COVID-19 pandemic)\n12. "
}
buf: { (#3) [5 bytes data]
buf: { (#3) [28 bytes data]
{
  "answer": "2024 - Paris, France\n\nNote"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [41 bytes data]
{
  "answer": ": The Olympics were held without a host"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [26 bytes data]
{
  "answer": " city for one year (2022"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [42 bytes data]
{
  "answer": ", due to the Russian invasion of Ukraine"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [29 bytes data]
{
  "answer": ").\n\nWinter Olympics:\n1. 198"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [27 bytes data]
{
  "answer": "0 - Lake Placid, New York"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [15 bytes data]
{
  "answer": ", USA\n2. 1984"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [27 bytes data]
{
  "answer": " - Sarajevo, Yugoslavia ("
}
buf: { (#3) [5 bytes data]
buf: { (#3) [30 bytes data]
{
  "answer": "now Bosnia and Herzegovina)\n"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [20 bytes data]
{
  "answer": "3. 1988 - Calgary,"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [25 bytes data]
{
  "answer": " Alberta, Canada\n4. 199"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [26 bytes data]
{
  "answer": "2 - Albertville, France\n"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [13 bytes data]
{
  "answer": "5. 1994 - L"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [24 bytes data]
{
  "answer": "illehammer, Norway\n6. "
}
buf: { (#3) [5 bytes data]
buf: { (#3) [23 bytes data]
{
  "answer": "1998 - Nagano, Japan\n"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [16 bytes data]
{
  "answer": "7. 2002 - Salt"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [24 bytes data]
{
  "answer": " Lake City, Utah, USA\n"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [18 bytes data]
{
  "answer": "8. 2006 - Torino"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [17 bytes data]
{
  "answer": ", Italy\n9. 2010"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [40 bytes data]
{
  "answer": " - Vancouver, British Columbia, Canada"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [13 bytes data]
{
  "answer": "\n10. 2014 -"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [20 bytes data]
{
  "answer": " Sochi, Russia\n11."
}
buf: { (#3) [5 bytes data]
buf: { (#3) [16 bytes data]
{
  "answer": " 2018 - Pyeong"
}
buf: { (#3) [5 bytes data]
buf: { (#3) [24 bytes data]
{
  "answer": "chang, South Korea\n12."
}
buf: < (#3)
buf: < (#3) Grpc-Message:
buf: < (#3) Grpc-Status: 0
buf: * (#3) Call complete
buf: < (#2)
buf: < (#2) Grpc-Message:
buf: < (#2) Grpc-Status: 0
buf: * (#2) Call complete
%

πŸ”— Multiple Services with Custom Interceptors

PydanticRPC supports defining and running multiple services in a single server:

from datetime import datetime
import grpc
from grpc import ServicerContext

from pydantic_rpc import Server, Message


class FooRequest(Message):
    name: str
    age: int
    d: dict[str, str]


class FooResponse(Message):
    name: str
    age: int
    d: dict[str, str]


class BarRequest(Message):
    names: list[str]


class BarResponse(Message):
    names: list[str]


class FooService:
    def foo(self, request: FooRequest) -> FooResponse:
        return FooResponse(name=request.name, age=request.age, d=request.d)


class MyMessage(Message):
    name: str
    age: int
    o: int | datetime


class Request(Message):
    name: str
    age: int
    d: dict[str, str]
    m: MyMessage


class Response(Message):
    name: str
    age: int
    d: dict[str, str]
    m: MyMessage | str


class BarService:
    def bar(self, req: BarRequest, ctx: ServicerContext) -> BarResponse:
        return BarResponse(names=req.names)


class CustomInterceptor(grpc.ServerInterceptor):
    def intercept_service(self, continuation, handler_call_details):
        # do something
        print(handler_call_details.method)
        return continuation(handler_call_details)


async def app(scope, receive, send):
    pass


if __name__ == "__main__":
    s = Server(10, CustomInterceptor())
    s.run(
        FooService(),
        BarService(),
    )

🩺 [TODO] Custom Health Check

TODO

πŸ—„οΈ Protobuf file and code (Python files) generation using CLI

You can genereate protobuf files and code for a given module and a specified class using pydantic-rpc CLI command:

pydantic-rpc a_module.py aClassName

Using this generated proto file and tools as protoc, buf and BSR, you could generate code for any desired language other than Python.

πŸ“– Data Type Mapping

Python Type Protobuf Type
str string
bytes bytes
bool bool
int int32
float float, double
list[T], tuple[T] repeated T
dict[K, V] map<K, V>
datetime.datetime google.protobuf.Timestamp
datetime.timedelta google.protobuf.Duration
typing.Union[A, B] oneof A, B
subclass of enum.Enum enum
subclass of pydantic.BaseModel message

TODO

  • Streaming Support
    • unary-stream
    • stream-unary
    • stream-stream
  • Betterproto Support
  • Sonora-connect Support
  • Custom Health Check Support
  • Add more examples
  • Add tests

πŸ“œ License

This project is licensed under the MIT License. See the LICENSE file for details.

About

PydanticRPC is a Python library that enables you to rapidly expose Pydantic models via gRPC/ConnectRPC services without writing any protobuf files.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages