Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Notebooks for Convex, CIFAR, MNIST #30

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 43 additions & 7 deletions hpsklearn/demo_support.py
Original file line number Diff line number Diff line change
@@ -1,44 +1,80 @@
import datetime
import time
import numpy as np
import matplotlib.pyplot as plt
import hyperopt
from IPython import display

def lossof(x):
try:
return float(x)
except:
return np.inf

def scatter_error_vs_time(estimator, ax):
losses = estimator.trials.losses()
ax.set_title('Job Error Throughout Run')
ax.set_ylabel('Validation error rate')
ax.set_xlabel('Iteration')
ax.scatter(range(len(losses)), losses)


def plot_minvalid_vs_time(estimator, ax, ylim=None):
losses = estimator.trials.losses()
losses = map(lossof, estimator.trials.losses())
ts = range(1, len(losses))
mins = [np.min(losses[:ii]) for ii in ts]
ax.set_ylabel('min(Validation error rate to-date)')
ax.set_ylabel('Validation error)')
ax.set_xlabel('Iteration')
if ylim:
if ylim is not None:
ax.set_ylim(*ylim)
ax.set_title('Min Loss to Date')
ax.plot(ts, mins)


def plot_duration_vs_time(estimator, ax, ylim=None):
def duration_of(tr):
delta = (tr['refresh_time'] - tr['book_time'])
return delta.total_seconds()
durations = map(duration_of, estimator.trials.trials)
ax.set_ylabel('Seconds')
ax.set_xlabel('Iteration')
ax.set_title('Job duration')
ax.scatter(range(len(durations)), durations)


class PlotHelper(object):
def __init__(self, estimator, mintodate_ylim):
def __init__(self, estimator, mintodate_ylim=None, figsize=(16, 3.5)):
self.estimator = estimator
self.fig, self.axs = plt.subplots(1, 2)
self.post_iter_wait = .5
self.fig, self.axs = plt.subplots(1, 3, figsize=figsize)
self.post_iter_wait = .3
self.mintodate_ylim = mintodate_ylim
self.t0 = time.time()

def post_iter(self):
self.axs[0].clear()
self.axs[1].clear()
scatter_error_vs_time(self.estimator, self.axs[0])
plot_minvalid_vs_time(self.estimator, self.axs[1],
ylim=self.mintodate_ylim)
display.clear_output()
plot_duration_vs_time(self.estimator, self.axs[2])
self.post_loop()
#display.clear_output()
display.display(self.fig)
now = datetime.datetime.now()
display.display('Last update: %s' % (
now.strftime('%H:%M:%S %b %d, %Y')))
time.sleep(self.post_iter_wait)

def post_loop(self):
display.clear_output()
print('Total trials: %s' % len(self.estimator.trials.trials))
print('Successful trials: %s' % len(
filter(lambda st: st == hyperopt.STATUS_OK,
self.estimator.trials.statuses())))
print('Failed trials: %s' % len(
filter(lambda st: st != hyperopt.STATUS_OK,
self.estimator.trials.statuses())))
losses = map(lossof, self.estimator.trials.losses())
print('Best validation error: %s' % min(losses))

print('Total wall time: %.1f minutes' % ((time.time() - self.t0) / 60.))
17 changes: 17 additions & 0 deletions hpsklearn/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,10 +164,27 @@ def should_stop(scores):
'duration': t_done - t_start,
}
rtype = 'return'
elif 'overflow' in str(exc):
t_done = time.time()
rval = {
'status': hyperopt.STATUS_FAIL,
'failure': str(exc),
'duration': t_done - t_start,
}
rtype = 'return'
else:
rval = exc
rtype = 'raise'

except (MemoryError,), exc:
t_done = time.time()
rval = {
'status': hyperopt.STATUS_FAIL,
'failure': str(exc),
'duration': t_done - t_start,
}
rtype = 'return'

except (AttributeError,), exc:
print 'Failing due to k_means_ weirdness'
if "'NoneType' object has no attribute 'copy'" in str(exc):
Expand Down
169 changes: 169 additions & 0 deletions notebooks/Demo-CIFAR10.ipynb

Large diffs are not rendered by default.

173 changes: 173 additions & 0 deletions notebooks/Demo-Convex.ipynb

Large diffs are not rendered by default.

68 changes: 37 additions & 31 deletions notebooks/Demo-Iris.ipynb

Large diffs are not rendered by default.

171 changes: 171 additions & 0 deletions notebooks/Demo-MNIST.ipynb

Large diffs are not rendered by default.