Skip to content

Commit

Permalink
Merge pull request #124 from hummingbot/feat/config_generator
Browse files Browse the repository at this point in the history
(feat) position builder | config generator
  • Loading branch information
cardosofede authored Apr 1, 2024
2 parents 73722c2 + 3424d68 commit b154835
Show file tree
Hide file tree
Showing 3 changed files with 267 additions and 0 deletions.
1 change: 1 addition & 0 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ def main_page():
Page("pages/master_conf/app.py", "Credentials", "🗝️"),
Page("pages/bot_orchestration/app.py", "Instances", "🦅"),
Page("pages/file_manager/app.py", "File Explorer", "🗂"),
Page("pages/position_builder/app.py", "Position Builder", "🔭"),
Section("Backtest Manager", "⚙️"),
Page("pages/backtest_get_data/app.py", "Get Data", "💾"),
Page("pages/backtest_create/create.py", "Create", "⚔️"),
Expand Down
Empty file.
266 changes: 266 additions & 0 deletions pages/position_builder/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,266 @@
from math import exp
import streamlit as st
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from decimal import Decimal
import yaml

from utils.st_utils import initialize_st_page
from hummingbot.smart_components.utils.distributions import Distributions

# Initialize the Streamlit page
initialize_st_page(title="Position Generator", icon="🔭", initial_sidebar_state="collapsed")

# Page content
st.text("This tool will help you analyze and generate a position config.")
st.write("---")

# Layout in columns
col_quote, col_tp_sl, col_levels, col_spread_dist, col_amount_dist = st.columns([1, 1, 1, 2, 2])


def normalize(values):
total = sum(values)
return [val / total for val in values]


def convert_to_yaml(spreads, order_amounts):
data = {
'dca_spreads': [float(spread)/100 for spread in spreads],
'dca_amounts': [float(amount) for amount in order_amounts]
}
return yaml.dump(data, default_flow_style=False)


with col_quote:
total_amount_quote = st.number_input("Total amount of quote", value=1000)

with col_tp_sl:
tp = st.number_input("Take Profit (%)", min_value=0.0, max_value=100.0, value=2.0, step=0.1)
sl = st.number_input("Stop Loss (%)", min_value=0.0, max_value=100.0, value=8.0, step=0.1)

with col_levels:
n_levels = st.number_input("Number of Levels", min_value=1, value=5)


def distribution_inputs(column, dist_type_name):
if dist_type_name == "Spread":
dist_type = column.selectbox(
f"Type of {dist_type_name} Distribution",
("GeoCustom", "Geometric", "Fibonacci", "Manual", "Logarithmic", "Arithmetic"),
key=f"{dist_type_name.lower()}_dist_type",
# Set the default value
)
else:
dist_type = column.selectbox(
f"Type of {dist_type_name} Distribution",
("Geometric", "Fibonacci", "Manual", "Logarithmic", "Arithmetic"),
key=f"{dist_type_name.lower()}_dist_type",
# Set the default value
)
base, scaling_factor, step, ratio, manual_values = None, None, None, None, None

if dist_type != "Manual":
start = column.number_input(f"{dist_type_name} Start Value", value=1.0, key=f"{dist_type_name.lower()}_start")
if dist_type == "Logarithmic":
base = column.number_input(f"{dist_type_name} Log Base", value=exp(1), key=f"{dist_type_name.lower()}_base")
scaling_factor = column.number_input(f"{dist_type_name} Scaling Factor", value=2.0, key=f"{dist_type_name.lower()}_scaling")
elif dist_type == "Arithmetic":
step = column.number_input(f"{dist_type_name} Step", value=0.1, key=f"{dist_type_name.lower()}_step")
elif dist_type == "Geometric":
ratio = column.number_input(f"{dist_type_name} Ratio", value=2.0, key=f"{dist_type_name.lower()}_ratio")
elif dist_type == "GeoCustom":
ratio = column.number_input(f"{dist_type_name} Ratio", value=2.0, key=f"{dist_type_name.lower()}_ratio")
else:
manual_values = [column.number_input(f"{dist_type_name} for level {i+1}", value=1.0, key=f"{dist_type_name.lower()}_{i}") for i in range(n_levels)]
start = None # As start is not relevant for Manual type

return dist_type, start, base, scaling_factor, step, ratio, manual_values


# Spread and Amount Distributions
spread_dist_type, spread_start, spread_base, spread_scaling, spread_step, spread_ratio, manual_spreads = distribution_inputs(col_spread_dist, "Spread")
amount_dist_type, amount_start, amount_base, amount_scaling, amount_step, amount_ratio, manual_amounts = distribution_inputs(col_amount_dist, "Amount")


def get_distribution(dist_type, n_levels, start, base=None, scaling_factor=None, step=None, ratio=None, manual_values=None):
if dist_type == "Manual":
return manual_values
elif dist_type == "Linear":
return Distributions.linear(n_levels, start, start + tp)
elif dist_type == "Fibonacci":
return Distributions.fibonacci(n_levels, start)
elif dist_type == "Logarithmic":
return Distributions.logarithmic(n_levels, base, scaling_factor, start)
elif dist_type == "Arithmetic":
return Distributions.arithmetic(n_levels, start, step)
elif dist_type == "Geometric":
return Distributions.geometric(n_levels, start, ratio)
elif dist_type == "GeoCustom":
return [Decimal("0")] + Distributions.geometric(n_levels - 1, start, ratio)

spread_distribution = get_distribution(spread_dist_type, n_levels, spread_start, spread_base, spread_scaling, spread_step, spread_ratio, manual_spreads)
amount_distribution = normalize(get_distribution(amount_dist_type, n_levels, amount_start, amount_base, amount_scaling, amount_step, amount_ratio, manual_amounts))
order_amounts = [Decimal(amount_dist * total_amount_quote) for amount_dist in amount_distribution]
spreads = [Decimal(spread - spread_distribution[0]) for spread in spread_distribution]


# Export Button
if st.button('Export as YAML'):
yaml_data = convert_to_yaml(spreads, order_amounts)
st.download_button(
label="Download YAML",
data=yaml_data,
file_name='config.yaml',
mime='text/yaml'
)

break_even_values = []
take_profit_values = []
for level in range(n_levels):
spreads_normalized = [Decimal(spread) + Decimal(0.01) for spread in spreads[:level+1]]
amounts = order_amounts[:level+1]
break_even = (sum([spread * amount for spread, amount in zip(spreads_normalized, amounts)]) / sum(amounts)) - Decimal(0.01)
break_even_values.append(break_even)
take_profit_values.append(break_even - Decimal(tp))

accumulated_amount = [sum(order_amounts[:i+1]) for i in range(len(order_amounts))]


def calculate_unrealized_pnl(spreads, break_even_values, accumulated_amount):
unrealized_pnl = []
for i in range(len(spreads)):
distance = abs(spreads[i] - break_even_values[i])
pnl = accumulated_amount[i] * distance / 100 # PNL calculation
unrealized_pnl.append(pnl)
return unrealized_pnl

# Calculate unrealized PNL
cum_unrealized_pnl = calculate_unrealized_pnl(spreads, break_even_values, accumulated_amount)


tech_colors = {
'spread': '#00BFFF', # Deep Sky Blue
'break_even': '#FFD700', # Gold
'take_profit': '#32CD32', # Green
'order_amount': '#1E90FF', # Dodger Blue
'cum_amount': '#4682B4', # Steel Blue
'stop_loss': '#FF0000', # Red
}

# Create Plotly figure with secondary y-axis and a dark theme
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.update_layout(template="plotly_dark")

# Update the Scatter Plots and Horizontal Lines
fig.add_trace(go.Scatter(x=list(range(len(spreads))), y=spreads, name='Spread (%)', mode='lines+markers', line=dict(width=3, color=tech_colors['spread'])), secondary_y=False)
fig.add_trace(go.Scatter(x=list(range(len(break_even_values))), y=break_even_values, name='Break Even (%)', mode='lines+markers', line=dict(width=3, color=tech_colors['break_even'])), secondary_y=False)
fig.add_trace(go.Scatter(x=list(range(len(take_profit_values))), y=take_profit_values, name='Take Profit (%)', mode='lines+markers', line=dict(width=3, color=tech_colors['take_profit'])), secondary_y=False)

# Add the new Bar Plot for Cumulative Unrealized PNL
fig.add_trace(go.Bar(
x=list(range(len(cum_unrealized_pnl))),
y=cum_unrealized_pnl,
text=[f"{pnl:.2f}" for pnl in cum_unrealized_pnl],
textposition='auto',
textfont=dict(color='white', size=12),
name='Cum Unrealized PNL',
marker=dict(color='#FFA07A', opacity=0.6) # Light Salmon color, adjust as needed
), secondary_y=True)

fig.add_trace(go.Bar(
x=list(range(len(order_amounts))),
y=order_amounts,
text=[f"{amt:.2f}" for amt in order_amounts], # List comprehension to format text labels
textposition='auto',
textfont=dict(
color='white',
size=12
),
name='Order Amount',
marker=dict(color=tech_colors['order_amount'], opacity=0.5),
), secondary_y=True)

# Modify the Bar Plot for Accumulated Amount
fig.add_trace(go.Bar(
x=list(range(len(accumulated_amount))),
y=accumulated_amount,
text=[f"{amt:.2f}" for amt in accumulated_amount], # List comprehension to format text labels
textposition='auto',
textfont=dict(
color='white',
size=12
),
name='Cum Amount',
marker=dict(color=tech_colors['cum_amount'], opacity=0.5),
), secondary_y=True)


# Add Horizontal Lines for Last Breakeven Price and Stop Loss Level
last_break_even = break_even_values[-1]
stop_loss_value = last_break_even + Decimal(sl)
# Horizontal Lines for Last Breakeven and Stop Loss
fig.add_hline(y=last_break_even, line_dash="dash", annotation_text=f"Global Break Even: {last_break_even:.2f} (%)", annotation_position="top left", line_color=tech_colors['break_even'])
fig.add_hline(y=stop_loss_value, line_dash="dash", annotation_text=f"Stop Loss: {stop_loss_value:.2f} (%)", annotation_position="bottom right", line_color=tech_colors['stop_loss'])

# Update Annotations for Spread and Break Even
for i, (spread, be_value, tp_value) in enumerate(zip(spreads, break_even_values, take_profit_values)):
fig.add_annotation(x=i, y=spread, text=f"{spread:.2f}%", showarrow=True, arrowhead=1, yshift=10, xshift=-2, font=dict(color=tech_colors['spread']))
fig.add_annotation(x=i, y=be_value, text=f"{be_value:.2f}%", showarrow=True, arrowhead=1, yshift=5, xshift=-2, font=dict(color=tech_colors['break_even']))
fig.add_annotation(x=i, y=tp_value, text=f"{tp_value:.2f}%", showarrow=True, arrowhead=1, yshift=10, xshift=-2, font=dict(color=tech_colors['take_profit']))
# Update Layout with a Dark Theme
fig.update_layout(
title="Spread, Accumulated Amount, Break Even, and Take Profit by Order Level",
xaxis_title="Order Level",
yaxis_title="Spread (%)",
yaxis2_title="Amount (Quote)",
height=800,
width=1800,
plot_bgcolor='rgba(0, 0, 0, 0)', # Transparent background
paper_bgcolor='rgba(0, 0, 0, 0.1)', # Lighter shade for the paper
font=dict(color='white') # Font color
)

# Calculate metrics
max_loss = total_amount_quote * Decimal(sl / 100)
profit_per_level = [cum_amount * Decimal(tp / 100) for cum_amount in accumulated_amount]
loots_to_recover = [max_loss / profit for profit in profit_per_level]

# Define a consistent annotation size and maximum value for the secondary y-axis
circle_text = "●" # Unicode character for a circle
max_secondary_value = max(max(accumulated_amount), max(order_amounts), max(cum_unrealized_pnl)) # Adjust based on your secondary y-axis data

# Determine an appropriate y-offset for annotations
y_offset_secondary = max_secondary_value * Decimal(0.1) # Adjusts the height relative to the maximum value on the secondary y-axis

# Add annotations to the Plotly figure for the secondary y-axis
for i, loot in enumerate(loots_to_recover):
fig.add_annotation(
x=i,
y=max_secondary_value + y_offset_secondary, # Position above the maximum value using the offset
text=f"{circle_text}<br>LTR: {round(loot, 2)}", # Circle symbol and loot value in separate lines
showarrow=False,
font=dict(size=16, color='purple'),
xanchor="center", # Centers the text above the x coordinate
yanchor="bottom", # Anchors the text at its bottom to avoid overlapping
align="center",
yref="y2" # Reference the secondary y-axis
)
# Add Max Loss Metric as an Annotation
max_loss_annotation_text = f"Max Loss (Quote): {max_loss:.2f}"
fig.add_annotation(
x=max(len(spreads), len(break_even_values)) - 1, # Positioning the annotation to the right
text=max_loss_annotation_text,
showarrow=False,
font=dict(size=20, color='white'),
bgcolor='red', # Red background for emphasis
xanchor="left",
yanchor="top",
yref="y2" # Reference the secondary y-axis
)

st.write("---")

# Display in Streamlit
st.plotly_chart(fig)

0 comments on commit b154835

Please sign in to comment.