Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion examples/seq2seq/builtin_trainer/finetune.sh
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@
python finetune_trainer.py \
--learning_rate=3e-5 \
--fp16 \
--do_train --do_eval --do_predict --evaluate_during_training \
--do_train --do_eval --do_predict \
--evaluation_strategy steps \
--predict_with_generate \
--n_val 1000 \
"$@"
3 changes: 2 additions & 1 deletion examples/seq2seq/builtin_trainer/finetune_tpu.sh
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,8 @@ export TPU_NUM_CORES=8
python xla_spawn.py --num_cores $TPU_NUM_CORES \
finetune_trainer.py \
--learning_rate=3e-5 \
--do_train --do_eval --evaluate_during_training \
--do_train --do_eval \
--evaluation_strategy steps \
--prediction_loss_only \
--n_val 1000 \
"$@"
3 changes: 2 additions & 1 deletion examples/seq2seq/builtin_trainer/train_distil_marian_enro.sh
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,8 @@ python finetune_trainer.py \
--num_train_epochs=6 \
--save_steps 3000 --eval_steps 3000 \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \
--do_train --do_eval --do_predict --evaluate_during_training\
--do_train --do_eval --do_predict \
--evaluation_strategy steps \
--predict_with_generate --logging_first_step \
--task translation --label_smoothing 0.1 \
"$@"
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,8 @@ python xla_spawn.py --num_cores $TPU_NUM_CORES \
--save_steps 500 --eval_steps 500 \
--logging_first_step --logging_steps 200 \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \
--do_train --do_eval --evaluate_during_training \
--do_train --do_eval \
--evaluation_strategy steps \
--prediction_loss_only \
--task translation --label_smoothing 0.1 \
"$@"
3 changes: 2 additions & 1 deletion examples/seq2seq/builtin_trainer/train_distilbart_cnn.sh
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ python finetune_trainer.py \
--save_steps 3000 --eval_steps 3000 \
--logging_first_step \
--max_target_length 56 --val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN \
--do_train --do_eval --do_predict --evaluate_during_training \
--do_train --do_eval --do_predict \
--evaluation_strategy steps \
--predict_with_generate --sortish_sampler \
"$@"
3 changes: 2 additions & 1 deletion examples/seq2seq/builtin_trainer/train_mbart_cc25_enro.sh
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,8 @@ python finetune_trainer.py \
--sortish_sampler \
--num_train_epochs 6 \
--save_steps 25000 --eval_steps 25000 --logging_steps 1000 \
--do_train --do_eval --do_predict --evaluate_during_training \
--do_train --do_eval --do_predict \
--evaluation_strategy steps \
--predict_with_generate --logging_first_step \
--task translation \
"$@"
5 changes: 3 additions & 2 deletions src/transformers/integrations.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import math
import os

from .trainer_utils import EvaluationStrategy
from .utils import logging


Expand Down Expand Up @@ -212,13 +213,13 @@ def _objective(trial, checkpoint_dir=None):
# Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting.
if isinstance(
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining)
) and (not trainer.args.do_eval or not trainer.args.evaluate_during_training):
) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == EvaluationStrategy.NO):
raise RuntimeError(
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. "
"This means your trials will not report intermediate results to Ray Tune, and "
"can thus not be stopped early or used to exploit other trials parameters. "
"If this is what you want, do not use {cls}. If you would like to use {cls}, "
"make sure you pass `do_eval=True` and `evaluate_during_training=True` in the "
"make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the "
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__)
)

Expand Down
4 changes: 2 additions & 2 deletions src/transformers/trainer_tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

from .modeling_tf_utils import TFPreTrainedModel
from .optimization_tf import GradientAccumulator, create_optimizer
from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput, set_seed
from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, EvaluationStrategy, PredictionOutput, set_seed
from .training_args_tf import TFTrainingArguments
from .utils import logging

Expand Down Expand Up @@ -561,7 +561,7 @@ def train(self) -> None:

if (
self.args.eval_steps > 0
and self.args.evaluate_during_training
and self.args.evaluate_strategy == EvaluationStrategy.STEPS
and self.global_step % self.args.eval_steps == 0
):
self.evaluate()
Expand Down
8 changes: 6 additions & 2 deletions src/transformers/training_args_tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,12 @@ class TFTrainingArguments(TrainingArguments):
Whether to run evaluation on the dev set or not.
do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run predictions on the test set or not.
evaluate_during_training (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run evaluation during training at each logging step or not.
evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.EvaluationStrategy`, `optional`, defaults to :obj:`"no"`):
The evaluation strategy to adopt during training. Possible values are:

* :obj:`"no"`: No evaluation is done during training.
* :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.

per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8):
The batch size per GPU/TPU core/CPU for training.
per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8):
Expand Down