Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -248,6 +248,7 @@ conversion utilities for the following models:
model_doc/marian
model_doc/mbart
model_doc/mobilebert
model_doc/mt5
model_doc/gpt
model_doc/gpt2
model_doc/pegasus
Expand Down
53 changes: 53 additions & 0 deletions docs/source/model_doc/mt5.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
MT5
-----------------------------------------------------------------------------------------------------------------------

Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The mT5 model was presented in `mT5: A massively multilingual pre-trained text-to-text transformer
<https://arxiv.org/abs/2010.11934>`_ by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, Colin Raffel.

The abstract from the paper is the following:

*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. All of the code and model checkpoints*

The original code can be found `here <https://github.com/google-research/multilingual-t5>`__.

MT5Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.MT5Config
:members:


MT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.MT5Model
:members:


MT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.MT5ForConditionalGeneration
:members:


TFMT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFMT5Model
:members:


TFMT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFMT5ForConditionalGeneration
:members:
2 changes: 2 additions & 0 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -498,6 +498,7 @@
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
from .models.mt5 import MT5Config, MT5ForConditionalGeneration, MT5Model
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The config should be always imported, not just under is_torch_available.

from .models.openai import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTDoubleHeadsModel,
Expand Down Expand Up @@ -791,6 +792,7 @@
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
from .models.mt5 import TFMT5ForConditionalGeneration, TFMT5Model
from .models.openai import (
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFOpenAIGPTDoubleHeadsModel,
Expand Down
3 changes: 3 additions & 0 deletions src/transformers/models/auto/configuration_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
from ..marian.configuration_marian import MarianConfig
from ..mbart.configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig
from ..mobilebert.configuration_mobilebert import MobileBertConfig
from ..mt5.configuration_mt5 import MT5Config
from ..openai.configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig
from ..pegasus.configuration_pegasus import PegasusConfig
from ..prophetnet.configuration_prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig
Expand Down Expand Up @@ -101,6 +102,7 @@
[
# Add configs here
("retribert", RetriBertConfig),
("mt5", MT5Config),
("t5", T5Config),
("mobilebert", MobileBertConfig),
("distilbert", DistilBertConfig),
Expand Down Expand Up @@ -178,6 +180,7 @@
("rag", "RAG"),
("xlm-prophetnet", "XLMProphetNet"),
("prophetnet", "ProphetNet"),
("mt5", "mT5"),
]
)

Expand Down
4 changes: 4 additions & 0 deletions src/transformers/models/auto/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,7 @@
MobileBertForTokenClassification,
MobileBertModel,
)
from ..mt5.modeling_mt5 import MT5ForConditionalGeneration, MT5Model
from ..openai.modeling_openai import OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel
from ..pegasus.modeling_pegasus import PegasusForConditionalGeneration
from ..prophetnet.modeling_prophetnet import ProphetNetForCausalLM, ProphetNetForConditionalGeneration, ProphetNetModel
Expand Down Expand Up @@ -209,6 +210,7 @@
MarianConfig,
MBartConfig,
MobileBertConfig,
MT5Config,
OpenAIGPTConfig,
PegasusConfig,
ProphetNetConfig,
Expand All @@ -235,6 +237,7 @@
[
# Base model mapping
(RetriBertConfig, RetriBertModel),
(MT5Config, MT5Model),
(T5Config, T5Model),
(DistilBertConfig, DistilBertModel),
(AlbertConfig, AlbertModel),
Expand Down Expand Up @@ -376,6 +379,7 @@
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
(MT5Config, MT5ForConditionalGeneration),
(T5Config, T5ForConditionalGeneration),
(PegasusConfig, PegasusForConditionalGeneration),
(MarianConfig, MarianMTModel),
Expand Down
4 changes: 4 additions & 0 deletions src/transformers/models/auto/modeling_tf_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
from ..mt5.modeling_tf_mt5 import TFMT5ForConditionalGeneration, TFMT5Model
from ..openai.modeling_tf_openai import TFOpenAIGPTLMHeadModel, TFOpenAIGPTModel
from ..pegasus.modeling_tf_pegasus import TFPegasusForConditionalGeneration
from ..roberta.modeling_tf_roberta import (
Expand Down Expand Up @@ -161,6 +162,7 @@
MarianConfig,
MBartConfig,
MobileBertConfig,
MT5Config,
OpenAIGPTConfig,
PegasusConfig,
RobertaConfig,
Expand All @@ -182,6 +184,7 @@
[
# Base model mapping
(LxmertConfig, TFLxmertModel),
(MT5Config, TFMT5Model),
(T5Config, TFT5Model),
(DistilBertConfig, TFDistilBertModel),
(AlbertConfig, TFAlbertModel),
Expand Down Expand Up @@ -294,6 +297,7 @@
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
(MT5Config, TFMT5ForConditionalGeneration),
(T5Config, TFT5ForConditionalGeneration),
(MarianConfig, TFMarianMTModel),
(MBartConfig, TFMBartForConditionalGeneration),
Expand Down
13 changes: 13 additions & 0 deletions src/transformers/models/mt5/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.

from ...file_utils import is_tf_available, is_torch_available
from .configuration_mt5 import MT5Config


if is_torch_available():
from .modeling_mt5 import MT5ForConditionalGeneration, MT5Model

if is_tf_available():
from .modeling_tf_mt5 import TFMT5ForConditionalGeneration, TFMT5Model
122 changes: 122 additions & 0 deletions src/transformers/models/mt5/configuration_mt5.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# coding=utf-8
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" mT5 model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class MT5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.MT5Model` or a
:class:`~transformers.TFMT5Model`. It is used to instantiate a mT5 model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the mT5 `google/mt5-small <https://huggingface.co/google/mt5-small>`__ architecture.

Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.

Arguments:
vocab_size (:obj:`int`, `optional`, defaults to 32128):
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.T5Model` or :class:`~transformers.TFT5Model`.
d_model (:obj:`int`, `optional`, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (:obj:`int`, `optional`, defaults to 64):
Size of the key, query, value projections per attention head. :obj:`d_kv` has to be equal to :obj:`d_model
// num_heads`.
d_ff (:obj:`int`, `optional`, defaults to 1024):
Size of the intermediate feed forward layer in each :obj:`T5Block`.
num_layers (:obj:`int`, `optional`, defaults to 8):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (:obj:`int`, `optional`):
Number of hidden layers in the Transformer decoder. Will use the same value as :obj:`num_layers` if not
set.
num_heads (:obj:`int`, `optional`, defaults to 6):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (:obj:`int`, `optional`, defaults to 32):
The number of buckets to use for each attention layer.
dropout_rate (:obj:`float`, `optional`, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (:obj:`float`, `optional`, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (:obj:`string`, `optional`, defaults to :obj:`"gated-gelu"`):
Type of feed forward layer to be used. Should be one of :obj:`"relu"` or :obj:`"gated-gelu"`.
"""
model_type = "mt5"

def __init__(
self,
vocab_size=250112,
d_model=512,
d_kv=64,
d_ff=1024,
num_layers=8,
num_decoder_layers=None,
num_heads=6,
relative_attention_num_buckets=32,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="gated-gelu",
is_encoder_decoder=True,
tokenizer_class="T5Tokenizer",
tie_word_embeddings=False,
pad_token_id=0,
eos_token_id=1,
decoder_start_token_id=0,
**kwargs
):
super().__init__(
is_encoder_decoder=is_encoder_decoder,
tokenizer_class=tokenizer_class,
tie_word_embeddings=tie_word_embeddings,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj

@property
def hidden_size(self):
return self.d_model

@property
def num_attention_heads(self):
return self.num_heads

@property
def num_hidden_layers(self):
return self.num_layers
83 changes: 83 additions & 0 deletions src/transformers/models/mt5/modeling_mt5.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# coding=utf-8
# Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch mT5 model. """

from ...utils import logging
from ..t5.modeling_t5 import T5ForConditionalGeneration, T5Model
from .configuration_mt5 import MT5Config


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "T5Config"
_TOKENIZER_FOR_DOC = "T5Tokenizer"


class MT5Model(T5Model):
r"""
This class overrides :class:`~transformers.T5Model`. Please check the superclass for the appropriate documentation
alongside usage examples.

Examples::
>>> from transformers import MT5Model, T5Tokenizer
>>> model = MT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = T5Tokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> batch = tokenizer.prepare_seq2seq_batch(src_texts=[article], tgt_texts=[summary], return_tensors="pt")
>>> outputs = model(input_ids=batch.input_ids, decoder_input_ids=batch.labels)
>>> hidden_states = outputs.last_hidden_state
"""
model_type = "mt5"
config_class = MT5Config
authorized_missing_keys = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
]
keys_to_never_save = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
]


class MT5ForConditionalGeneration(T5ForConditionalGeneration):
r"""
This class overrides :class:`~transformers.T5ForConditionalGeneration`. Please check the superclass for the
appropriate documentation alongside usage examples.

Examples::
>>> from transformers import MT5ForConditionalGeneration, T5Tokenizer
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = T5Tokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> batch = tokenizer.prepare_seq2seq_batch(src_texts=[article], tgt_texts=[summary], return_tensors="pt")
>>> outputs = model(**batch)
>>> loss = outputs.loss
"""

model_type = "mt5"
config_class = MT5Config
authorized_missing_keys = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
r"lm_head\.weight",
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
]
keys_to_never_save = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
]
Loading